
Validity of the river system representation 
 
The conventional morphodynamic model of a river reach at short and intermediate scale, usually 
consists of the standard one-dimensional partial differential equations (de St. Venant, Exner and 
Hirano with one or more active layers) and the annexed semi-empirical algebraic equations that 
describe the water flow and the sediment motion in the stream and in the bottom, complemented by 
the necessary boundary conditions. To simulate the evolution of a river system, this set of equations 
should in principle be applied to the hydrographic network of the river, together with a time-
dependent and space-dependent predictor of water and sediment production (by surface- and mass 
erosion) entering the streams from the basin slopes. 
 
To reduce the computational effort, the partial differential equations are often simplified (Fasolato et 
al., 2011) and the model schematization limited to the largest branches of the hydrographic network. 
Moreover, if the analysis is devoted to long-term simulations, the partial differential equations are 
properly averaged (to include algebraically the effects of the shorter time-scales) over pluriannual 
time-steps, as mentioned in the previous section. Despite all these expedients for reducing the 
numerical complexity, however, the computational effort remains largely high. Even more 
important, similar models are still too much detailed to highlight the salient aspects of the long-term 
morphodynamics for broad categories of river basins. For this reason, we decided to go further with 
the process of aggregating and averaging the basin model and yet preserving the essential 
peculiarities of each river system. 
 
First, following a procedure widely shared by both hydraulic engineers and geomorphologists, we 
aggregated the tree-shaped hydrographic network into a number of reaches connected in series and 
representing the different parts of the main watercourse. A second important simplification consists 
in integrating the 1D partial differential equations over the length of each reach. In this way, these 
partial differential equations are transformed into ordinary differential equations, while the physical 
description of the basin is expressed in terms of “concentrated” (0D) parameters, much more 
concise and manageable than the “distributed” (1D) parameters. The limit-case of aggregating the 
entire hydrographic network into one single reach of uniform width fed from upstream corresponds, 
in fact, to the case of the “sediment fed flume” mentioned by the Reviewer. Although very 
synthetic, the sediment fed flume scheme has been utilized by several researchers (often assuming 
uniform grain size material) for analysing the reaction of rivers to different types of perturbation. 
These applications (both with 1D and 0D approach) show the relevance of the overall parameter 
“morphological dispersion” closely related to the “response time” of the river (Paola et al, 1992 b: 
Castelltort and van Driessche, 2003; Gupta, 2007; Di Silvio and Nones, 2014 etc.). 
 
The 0D single-reach single-grainsize scheme, however, is, by definition, unable to investigate the 
specific aspects we are interested in: the general tendency of rivers to display a concave profile and 
a grainsize fining in the downstream direction. To analyze this behaviour, adding the minimum 
complication to the single reach scheme, we applied a 0D two-reach two-grainsize scheme. This 
approach, distinguishing an upland and a lowland segment of the basin, permits in fact to portray a 
vast variety of river systems. As indicated in Section 2.2 of the paper, the partition between the two 
segments is made in such a way as to mimic the basic structure of the hydrographic network and to 
put into account the planimetric characteristics of each reach (length and width) of the valley, 
inferred from any geographical data base. 
 
The long-term evolution of the system is provided by eq. 10 of the paper, when initial and boundary 
conditions are prescribed. If the boundary conditions (equivalent waterflow Q(t), sediment input 
G(t) and input grainsize composition G(t) remain constant, the system will evolve extremely 
slowly from a flat hypothetical initial condition (orogeny) towards the already mentioned 



“equilibrium conditions”, as shown in the Figure reported here. 
 

 
 
The evolving profiles shown in the Figure are expressed in non-dimensional terms as they represent 
the solution of eq.12, namely the non-dimensional formulation of eq.10. Eq.12 indicates that the 
long-term evolution of the system towards a uniform slope I∞ and a uniform bed composition ∞ 
can be described by only five independent non-dimensional parameters (br, lr, G, I∞ and ∞), 
which incorporate all the relevant morphometric quantities describing the river system and its 
boundary conditions.  
Namely: 
- B, constant river width (due to the assumption of constant Q) measured near the month; 
- BU and BD, averaged valley widths (allowing the river wandering), respectively for the upstream 
and downstream reach; 
- LU and LD, length of the main watercourse (properly defined) for the upstream and downstream 
reach; 
- Q, constant (equivalent) waterflow, accounting for the hydrological variations at flood and 
seasonal scale; 
- G, constant long-term sediment input (surface and mass erosion) from the basin slopes; 
- G, grainsize sediment composition of the sediment input. 
 
Note that, by assuming any reasonable sediment transport formula for a sediment mixture (e.g. eq. 3 
of the paper), the prescribed boundary conditions Q, G and G univocally define the equilibrium 
slope I∞ and the equilibrium bed composition ∞ of the river. In this way, the non-dimensional 
quantities I∞ and ∞ appearing in eq. 12 constitute a proxy of the prescribed equivalent waterflow Q, 
not explicitly included in the same equations.  
The five independent non-dimensional parameters, moreover, identify together another important 
quantity; namely, the “filling time” Tfill= V∞/G, which is the only fundamental parameter in the one-
reach one-grainsize scheme.  
In the present model, the filling time (although defined in a somewhat more complex way, see eq.13 
of the paper) is still the scaling quantity of the long-term time t, but is not anymore proportional to 
the response time of the river system as in the case of the one-reach one-grainsize scheme. In the 
two-reach, two-grainsize model, the five parameters br, lr, G, I∞ and ∞ define indirectly the 
rapidity of reaction and, more in general, the long-term behaviour of the system. 
 



The evolution of a certain river system, characterized by the five non-dimensional parameters, is 
represented in the Figure by a series of profiles at different values of the non-dimensional time t*. A 
similar representation may also be obtained for the bottom composition of the two reaches. From 
these representations, however, one cannot immediately perceive how evolve the quantities we are 
more interested in, namely the overall concavity and fining of the system.  
The model tests reported in the paper show that both the non-dimensional concavity (t*) and 
fining (t*) (by definition equal to zero for t*=0 and t*=∞) tend to present a persistent maximum 
value within an intermediate range of t* (0.1<t*<10), depending upon the five parameters 
characterizing the river basin. In any case, it seems reasonable to presume that maximum values for 
(t*) and (t*) correspond more or less to the “quasi-equilibrium configuration” of the present 
rivers. We plan therefore to verify the validity of this hypothesis by simulating the long-time 
evolution at geological scale of several real rivers, in a wide range of morphoclimatic conditions, 
i.e. size, hydrology and lithology of the basin. 
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