
EC1: The paper presents several flaws in the organization, in the methodological approach 

and in the presentation of the results. Unfortunately the English is not fluent and the clarity 

of the sentences and concepts is not always achieved. Even the abstract, which in principle 

has to outline clearly and synthetically the main findings of the study, seems quite obscure 

and does not convey clearly the information on what is the outcome of the presented 

research. For instance the starting paragraph of the Abstract “Existence of a self-affine long 

range persistence in the seismic noise time series evidences that the current state of system 

is not in the pure diffused regime and transition from coherent to incoherent motion is still 

on progress. Rate of this evolving transition can be indirectly linked to the degree of 

heterogeneity of medium” seems not well explained and it would be difficult for a reader 

to understand what exactly its meaning is. Please, be aware that at least the abstract should 

be developed in a manner that even a reader not strictly familiar with the topic of the paper 

can capture the general information. Unfortunately, the whole abstract fails in the 

characteristics of clarity, synthesis, clear explanation of the obtained results. 

  

AC: The extended abstract has been revised as follows. We hope it conveys clearly the main 

points of paper. 

  

Abstract. The diffusivity of incoming seismic noise is certainly a critical precondition for 

executing seismic interferometry. But higher than the narrow ~ (0.05 -0.3) Hz microseismic 

bandwidth, this diffusivity stems mostly from the heterogeneity of local site characteristics, 

therefore the heterogeneity level of sites should be assessed beforehand in order to make an 

accurate assessment of a Green's response. As evidenced by recent studies (e.g. Padhy 2016), 

it has become evident that seismic signals show a self-affine long-range persistence in their 

coherent parts (e.g. P or S body waves) which is slowly disappeared with the emergence of 

the incoherent diffused incoming wavefield (i.e. Coda waves). Pilz & Parolai (2014) showed 

that the rate of this evolving transition is closely linked to the heterogeneity level of medium 

in such a way that for a strong heterogonous medium less time will be needed for falling signal 

into the diffuse state. Therefore, learning the fractality of a seismic noise will indirectly 

provide the basis for a decision on the potential place for executing seismic interferometry. 

But this conclusion rests on this pillar that input incoming noise wavefield is always stationary, 

but there is obviously a degree of ambiguity surrounding such assumption. There may be 



circumstances under which signals include: Intrinsic Non-Stationary Direct Waves, Intrinsic 

Non-Stationary Scattered Waves and External Non-Stationary Signals. In executing the fractal 

analysis, it is essential that the method chosen be consistently reliable to ensure us that the 

correct Hurst coefficient is being used for the interpretation. There is broad agreement on 

the appropriateness of Multifractal Detrended Fluctuation Analysis (MF-DFA) in studying 

multifractal scaling behaviour of signals, corrupted by External Non-Stationary Signals, but it 

fails to comply with the intrinsic non-stationarity of signals. In this paper, we used the method 

introduced by Borgnat et al., (2010) to recognize the inherent characteristics of signal in the 

pre-processing step, before the feeding data into the cycle of Fractal analysis. Based on this 

revised method we try to define the degree of heterogeneity of different sites, locating at the 

North-Western of Iran.   
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==================================================================================  



EC1: However, the authors say that after removing mean and trend (which trend? linear trend? a 

figure with the raw data would have been useful), they merged all the different length segments; 

but how such merging was performed? Then since the data present gaps “stemmed from the zeroed 

out spikes and overlaps” (what overlaps?), this gaps were filled with linear interpolation; but this 

interpolation is not clearly explained, and the number and the length of gaps is not specified: these 

details would be important to mention especially in a journal like NPG, where a relevant focus is 

given on the methodological aspect of presented study. 

AC: This question is of utmost importance and we will definitely add the detail of data processing. Our 

datasets include different-length segments (they are less than several seconds. As seen in the top 

panel of Figure 1, the first and end samples of each segments are accompanied by small-length 

"glitches". Further, some segments are affected by unusual trends which shows little consistence with 

regard to the exception of before and after it. Therefore, using the absolute-running-mean 

normalization can surgically remove narrow data glitches and unusual trends of a special segment (the 

below panel of Figure 1). The length of sliding window should be adaptively selected as small as 

possible to preserve the overall long-range mean and correlation of time series. 

Missing data caused by removing these glitches is replaced by interpolated data as described at the 

Obspy Official website 

https://docs.obspy.org/packages/autogen/obspy.core.trace.Trace.__add__.html#obspy.core.trace.Trace.__add__ 

(Part 4, from Handling gaps section named: “Traces with gaps and given fill_value='interpolate' ”). 

The length of interpolated sample is just one-sample so they potentially cannot effect on the long-

range correlations. According to the Chen et al., (2002), shown at its Fig (2)-page 4, effects of the 

‘‘cutting’’ procedure on the scaling behavior of correlated signals is not considerable with less than 

10% of the points removed. 

 

https://docs.obspy.org/packages/autogen/obspy.core.trace.Trace.__add__.html#obspy.core.trace.Trace.__add__


Fig (1) Above: An example for Merged 24-hour length signal which accompanied by small-length 

"glitches". Below: It depicts the signal shown in top panel after removing the small length glitches and 

replacing them with interpolated signals.   
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================================================================================== 

EC1: An explanatory table indicating name, geographic coordinates, elevation of Stations 

should be attached. Such lack of clarity is also evidenced in the description of the dataset. It is not 

mentioned how many stations have been analysed, although one can guess them from Fig. 1; but 

probably an explanatory table indicating name, geographic coordinates, elevation, and maybe some 

simple statistical characteristics, would have been useful to add to make the text clearer.  

 AC:  We asserted below table as Table 1. 

Station Latitude (N˚) Longitude (E˚) Altitude (m) 

AZR 37.678 45.984 2273 

BST 37.701 46.889 2112 

HRS 38.318 47.042 2137 

MRD 38.713 45.702 2142 

SHB 38.283 45.619 2290 

SRB 37.825 47.663 1958 

TBZ 38.235 46.15 1550 

================================================================================== 

EC1: Some flaws also exist in the methodology. For instance it would have been more correct to link 

the persistence/antipersistence of a signal to the succession of the increments rather than of the 

signal values.  

AC: Thank you for notification. We will correct that mistake, at the original paper. 

================================================================================== 

EC1: It is correct the observation of the referee about what the authors did, ignoring the small part 

of the signal at its end that remains out during the calculation of the fluctuation function, since in 



most of the studies such small part at the end of the signal has not ignored but included recalculating 

the fluctuation function starting from the end of the signal.  

 

AC: Actually, we followed a process similar to the one outlined in the "Casetra, et al., 2007, and Pilz & 

Parolai (2014) ". Your comment is greatly appreciated in this regard, but the similar approach has been 

taken, geared towards improving the efficiency of their introduced method. We also considered the 

3D soil displacement instead of its three components given by Casetra, et al., (2007) as: 

"Moreover, we consider the 3D soil displacement instead of its three components because we 

are interested in studying the global soil motion under the effect of seismic noise; considering 

and comparing the motion in each component separately (H/V spectral ratio, etc.), could be 

done in a next paper (Casetra, et al., 2007, p. 259)".  

In any case, we feel that your comment is well-founded and that there needs to be reflection 

on the matter in the advanced processing. 
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=========================================================================== 

Also the use of the multitaper spectrogram (Borgnat et al., 2010) seems not correctly performed or 

at least not clearly carried out, raising issues on the correctness of the obtained results. 

AC: Maybe I was not quite clear enough in explaining the theoretical aspect of Testing Stationary of 

Signal, so was maybe not something one would want to do too 

A signal is stationary over a given observation scale if its spectrum undergoes no evolution in 

that scale. This assumption leads Bayram and Baraniuk, (2000) to use Multitaper 

Spectrograms (MS) for studying the time-dependent features of signals as  

𝓌𝑥(𝑡, 𝑓) =
1

𝐾
∑ |∫ 𝑥(𝜏)h𝑘(−𝑡)𝑒−𝑗2𝜋𝑓𝜏𝑑𝜏|

2𝐾
𝑘=0                                                                                       (1) 

where {h𝑘(𝜏 − 𝑡), 𝑘 = 1, … , 𝐾} stands for the first 𝐾 Hermite functions, which are used as 

the short-length windows. Bayram and Baraniuk (2000) used the Hermite functions h𝑘
𝐻(𝑡) as 



the sliding windows since they give the best time-frequency localization and orthonormality 

in the time-frequency domain.  Hermite functions can be obtained recursively, as follows 

h𝑘
𝐻(𝑡) = 𝜋

−1
4 (2𝑘𝑘!)

−1
2 𝑒

−𝑡2

2 𝐻𝑘(𝑡)                                                                                                                      (2) 

where {𝐻𝑘(𝑡), t ∈ N} represents Hermite polynomials, defined by     

𝐻𝑘(𝑡) = 2𝑡𝐻𝑘−1(𝑡) − 2(𝑘 − 2)𝐻𝑘−1(𝑡)                                                                                                         (3) 

in which 𝐻0(𝑡) =1 and 𝐻1(𝑡) = 2𝑡. These family of windows are mutually orthonormal with 

elliptic symmetry and maximum concentration in the time-frequency domain. To define the 

global spectrum of signal, we should take the average of MS as (Xiao et al., 2007) 

〈𝓌𝑥(𝑡, 𝑓)〉𝑁 =
1

𝑁
∑ 𝓌𝑥(𝑡, 𝑓)

𝑁

𝑡=0

                                                                                                                           (4) 

For a stationary signal 𝓌𝑥(𝑡, 𝑓) 𝓌𝑥
𝑎𝑣(𝑡, 𝑓)⁄  remains almost unchanged at the whole 

recording window, but in practice fluctuations in this ratio is inevitable. These fluctuations 

can be defined by a dissimilarity function as  

𝑐𝑡
𝑥 = 𝐷(𝓌𝑥(𝑡, 𝑓), 𝓌𝑥

𝑎𝑣(𝑡, 𝑓)),  𝑡 = 0, … , 𝑁                                                                                                    (5) 

The significance of fluctuations can also be assessed by using surrogates (Borgnant et al., 

2010). A surrogate is artificially produced in such a way that mimics statistical properties of 

real data. Isospectral surrogates have identical power spectra as the real signal but with 

randomized phases (Theiler et al., 1992). Once a collection of 𝐽  synthesized isospectral 

surrogates, {𝑠𝑗(𝑡), 𝑗 = 1, … , 𝐽}, are generated, the dissimilarity between local, 𝓌𝑠𝑗
(𝑡, 𝑓), and 

global spectra, 𝓌𝑠𝑗

𝑎𝑣(𝑡, 𝑓), for surrogates can be evaluated by (Borgnant et al., 2010)  

{𝑐𝑡

𝑠𝑗 = 𝐷 (𝓌𝑠𝑗
(𝑡, 𝑓), 𝓌𝑠𝑗

𝑎𝑣(𝑡, 𝑓)) ,  𝑡 = 0, … , 𝑁,  𝑗 = 1, … , 𝐽}                                                                    (6) 

Borgnat et al., (2010) merged the Kullback-Leibler distance, 

𝐷𝐾𝐿(𝐴, 𝐵) = ∫ (𝐴(𝑓) − 𝐵(𝑓))
𝛺

log(𝐴(𝑓) 𝐵(𝑓)⁄ ) 𝑑𝑓                                                                                  (7) 

and log-spectral distance, 𝐷𝐾𝐿(𝐴, 𝐵), 

𝐷𝐿𝑆𝐷(𝐴, 𝐵) = ∫ |log (𝐴(𝑓) 𝐵(𝑓)⁄ )|
𝛺

 𝑑𝑓                                                                                                         (8) 

in the following combined form  

𝐷(𝐴, 𝐵) = 𝐷𝐾𝐿(𝐴, 𝐵). (1 + 𝐷𝐿𝑆𝐷(𝐴̃, 𝐵̃))                                                                                                          (9) 

In these equations 𝐴  and 𝐵  are two positive distributions and 𝐴̃  and 𝐵̃  indicate their 

normalized versions to the unity over the domain. The dissimilarity function 𝐷(𝐴, 𝐵) enables 



us to differentiate an amplitude-modulated or frequency-modulated non-stationary signal 

from a stationary one. Statistical variance 𝛩1 = 𝑣𝑎𝑟(𝑐𝑛
𝑥)𝑛=1,…,𝑁  gives the variance of 𝑐𝑛

𝑥 s. 

Similarly, for each one of  𝐽 synthesized surrogates we can define a separate variance as  

{𝛩0(𝑗) = 𝑣𝑎𝑟(𝑐𝑛

𝑠𝑗
)

𝑛=1,….𝑁
,  𝑗 = 1, … , 𝐽}                                                                                                         (10) 

These 𝛩0s can be assumed as a set of realizations of Gamma probability distribution with the 

following description  

P(x; a, b) =
1

𝑏𝑎𝜓(𝑎)
𝑥𝑎−1 exp(− 𝑥

𝑏⁄ )                                                                                                           (11) 

As a null hypothesis original signals is supposed to be stationary but if it violates the 

predefined threshold γ, null hypothesis is rejected and non-stationarity is assumed, that is   

𝒥(𝑥) = {
1 𝑖𝑓 𝛩1 > 𝛾:  𝑛𝑜𝑛 − 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑖𝑡𝑦

0 𝑖𝑓 𝛩1 < 𝛾:  𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑖𝑡𝑦 
                                                                                                 (12) 

The threshold value for 𝛾  is considered as a confidence level of 95% for probability 

distribution under the maximum likelihood sense. By comparing 𝛩1 and the estimates of 𝛩0, 

one can define the degree of stationarity. Quantitatively, these difference can be evaluated 

by index of non-stationarity (INS) (Xiao et al., 2007): 

INS= √𝛩1
1

𝐽
∑ 𝛩0(𝑗)𝐽

𝑛=1⁄                                                                                                                     (13) 

Further, note the result of stationarity test depends on the window length of spectrogram, 

Tn. This dependence can be analyzed by the scale of non-stationarity (SNS). It informs us that 

in which one/ones of considered values for Tn  the given threshold in Eq. (10) has been 

exceeded (Xiao et al., 2007): 

SNS=
1

T
arg maxTn

{INS(Tn)}                                                                                                            (14) 
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EC1: The authors apply a complex signal pre-processing for searching the stationary windows to 

apply MFDFA. Besides the logical observation of the referee that the algorithm of the MFDFA is 

already developed in a way to remove the non-stationarities (thus making probably quite unuseful 

or unnecessary that pre-processing), it would have been, instead, much more useful, to apply the 

MFDFA directly to the signals (as obtained after the procedure described in section 2) and then to 

such stationary segments (and thus, after the pre-processing) to check if any difference would have 

been existed and to see if an improvement would have been obtained in the results, especially in 

relationship with the geophysical implications.  

AC: The background seismic noise, at all moments and over different realizations, is generally 

assumed to be a temporarily-stationary process with certain second-order statistical 

properties e.g., mean value, variance and autocorrelation functions. Also, other sources of 

non-stationarity (e.g. segments with different properties, random outliers or spikes with 

different amplitudes, etc.) are mostly viewed as superimposed external transient signals. In 

general, there is broad agreement on the appropriateness of MFDFA to get a better handle 

on the detrimental effects of simple types of superimposed intermittent non-stationarities, 

associating with exterior long period trends, e.g. polynomial, sinusoidal, and power-law 

functions, but In connection with this point, we must make it absolutely clear that inherent 

non-stationarity of signals should never be confused with the concept of non-stationarity 

made by external perturbations. We wish to draw your attention to the paragraph "III. 

ANALYSIS OF SUNSPOT TIME SERIES" of Movahed (et al., 2005) which explains the reasons 

why further attention must be taken in the analysing the inherent stationarity of signals in 

the pre-processing step, before feeding them into the cycle of Fractal analysis. The 

importance of this issue is strikingly apparent for seismic signals, since a seismic time series 

inherently may lose their stationarity within finite time intervals and theses intervals at 

various frequency ranges or temporal length are different. The experimental estimates 

obtained by Gorbatikov & Stepanova, (2008) shows that, at the microseismic range of 

frequency, signals are mostly quasi-stationarity, but this stationarity may not be preserved 

for very long periods of time. For instance, this interval might be lengthen to the several day 

or be shorten to the 1–1.5 h , while Wang et al., (2014) showed that for frequencies above 

than 1 Hz signals, the stationarity range of signal is just in the range of several seconds. 

Therefore, the choice for signal length in executing MFDFA may appear of utmost importance, 

in such a way that, choosing an extreme short window length might lead to non-informative, 



and potentially misleading results. In certain circumstances, reproducible non-Stationary 

ballistic waves e.g. the waves induced by the interaction of wind and topography, or the 

waves generated by the near surface micro cracks may make matters worse by inducing large 

variability in the characteristics of seismic noise signals. Furthermore, Meng, et al., (2015) 

showed that the incoherent coda waves might be intrinsically non-Stationary, as well. This 

might be due to the occurrence of multiple scattering in an instable perturbed medium which 

Margerin et al., (2016) named it "the active scattering". When the time series is stationary its 

behavior can be considered as a fractal Gaussian noise (fGn), while for a no-stationary signal 

the concept of fractal Brownian motion (fBn) should be used instead (Qian, 2003; Ge and 

Leung, 2013). The stationarity of fGn signals can be characterized by two parameters, σ2, the 

variance, and H, the Hurst coefficient, while a fBm process has a time dependent variance. 

Not surprisingly, on the basis of the class to which signals belong, different techniques may 

be required for processing. Seismic time series appear occasionally in the quasi-stationary 

state. In those cases, reproducible seismic signals could fall into the one of the following 

states: macroscale, mesoscale or microscale state (Borgnat et al. 2010), therefore, more 

accurate method is needed in order to properly assess the state of this quasi-stationarity. 

Failure to match signal class with the appropriate method of fractal analysis results in serious 

error in the estimating H and an incorrect interpretation of stationarity/non-stationarity of 

signal lead to misleading results (Chen et al., 2002; Eke, et al., 2002; Movahed et al., 2006). 

To this end, the Dispersional analysis (Disp) is recommended to use for alysing the 

fractionality of fGn signals, while bridge detrended scaled windowed variance analysis 

(bdSWV) is suitable for fBm signals (Eke et al., 2000). MFDFA can also be used sepately for 

both fGn and fBn (see, Delignieres et al., 2006). Based on this explanations, We want to 

underline that the degree of stationarity of signal should be known at the pre-processing step 

before making our choice between fGn and fBm process. However, these classes might not 

be a-priori known, so signal summation conversion method (SSC) is advised to use as a 

discriminating method (Eke et al., 2000). Based on this approach, a preliminary interpretation 

may be available by fitting a straight line of slope –β on a log–log plot of the periodogram. 

Based on this method, signals can be categorized into the fGn or fBn, according to the value 

of β. Eke et al., (2000) placed emphasis on this point that tthe periodogram is only applicable 

for differentiating if β falls into the category -1<β<0.38 (for an obvious stationary case) or if 

falls into the range of 1.4 <β<3 (for an obvious non-stationary case), but there is no certainty 



that this method fully comply with the complicated characteristics of signals in the range of 

3.8<β<1.4 where stationary and non-stationary mixed into each other. Therefore, it is 

essential to provide another reliable framework for a regular monitoring the stationarity of 

signals. In this paper, we do make a point that the length of signal directly impacts on the 

reliability of Long-range autocorrelations assessment. The importance of this factor was 

previously the subject of other investigations such as Delignieres et al., (2006) and Warlop et 

al., (2017). 
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AC: I am also skeptical about the obtained results, because it seems that the calculation of the slopes 

of the fluctuation functions in Fig. 3 was performed considering all the available shown scales; if so, 

this is clearly wrong, because the fluctuation functions for any q are not linear in log-log scales. So, 

if the geophysical interpretation of the results are based on such wrong calculations of the slopes 



of the fluctuation functions, also all the geophysical implications, rather poorly described by the 

way, would be not convincing. 

EC: We tested the process for different time length, different seasons, different weather conditions, 

and also night and day times. All of results will be added at the final paper. We confirmed the suitability 

of this method.  

 

 


