
A signal is stationary over a given observation scale if its spectrum undergoes no evolution in 
that scale. This assumption leads Bayram and Baraniuk, (2000) to use Multitaper 
Spectrograms (MS) for studying the time-dependent features of signals as  
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where {h𝑘(𝜏 − 𝑡), 𝑘 = 1,… , 𝐾} stands for the first 𝐾 Hermite functions, which are used as 
the short-length windows. Bayram and Baraniuk (2000) used the Hermite functions h𝑘

𝐻(𝑡) as 
the sliding windows since they give the best time-frequency localization and orthonormality 
in the time-frequency domain.  Hermite functions can be obtained recursively, as follows 
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where {𝐻𝑘(𝑡), t ∈ N} represents Hermite polynomials, defined by     

𝐻𝑘(𝑡) = 2𝑡𝐻𝑘−1(𝑡) − 2(𝑘 − 2)𝐻𝑘−1(𝑡)                                                                                   (3) 

in which 𝐻0(𝑡) =1 and 𝐻1(𝑡) = 2𝑡. These family of windows are mutually orthonormal with 
elliptic symmetry and maximum concentration in the time-frequency domain. To define the 
global spectrum of signal, we should take the average of MS as (Xiao et al., 2007) 
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For a stationary signal 𝓌𝑥(𝑡, 𝑓) 𝓌𝑥
𝑎𝑣(𝑡, 𝑓)⁄  remains almost unchanged at the whole recording 

window, but in practice fluctuations in this ratio is inevitable. These fluctuations can be 
defined by a dissimilarity function as  
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The significance of fluctuations can also be assessed by using surrogates (Borgnant et al., 
2010). A surrogate is artificially produced in such a way that mimics statistical properties of 
real data. Isospectral surrogates have identical power spectra as the real signal but with 
randomized phases (Theiler et al., 1992). Once a collection of 𝐽 synthesized isospectral 
surrogates, {𝑠𝑗(𝑡), 𝑗 = 1,… , 𝐽}, are generated, the dissimilarity between local, 𝓌𝑠𝑗

(𝑡, 𝑓), and 

global spectra, 𝓌𝑠𝑗
𝑎𝑣(𝑡, 𝑓), for surrogates can be evaluated by (Borgnant et al., 2010)  
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Borgnat et al., (2010) merged the Kullback-Leibler distance, 
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and log-spectral distance, 𝐷𝐾𝐿(𝐴, 𝐵), 
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in the following combined form  

𝐷(𝐴, 𝐵) = 𝐷𝐾𝐿(𝐴, 𝐵). (1 + 𝐷𝐿𝑆𝐷(𝐴̃, 𝐵̃))                                                                                   (9) 

In these equations 𝐴 and 𝐵 are two positive distributions and 𝐴̃ and 𝐵̃ indicate their 
normalized versions to the unity over the domain. The dissimilarity function 𝐷(𝐴, 𝐵) enables 
us to differentiate an amplitude-modulated or frequency-modulated non-stationary signal 
from a stationary one. Statistical variance 𝛩1 = 𝑣𝑎𝑟(𝑐𝑛

𝑥)𝑛=1,…,𝑁 gives the variance of 𝑐𝑛
𝑥s. 

Similarly, for each one of  𝐽 synthesized surrogates we can define a separate variance as  
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These 𝛩0s can be assumed as a set of realizations of Gamma probability distribution with the 
following description  
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As a null hypothesis original signals is supposed to be stationary but if it violates the 
predefined threshold γ, null hypothesis is rejected and non-stationarity is assumed, that is   

𝒥(𝑥) = {
1 𝑖𝑓 𝛩1 > 𝛾:  𝑛𝑜𝑛 − 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑖𝑡𝑦

0 𝑖𝑓 𝛩1 < 𝛾:  𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑖𝑡𝑦 
                                                                                                 (12) 

The threshold value for 𝛾 is considered as a confidence level of 95% for probability distribution 
under the maximum likelihood sense. By comparing 𝛩1 and the estimates of 𝛩0, one can 
define the degree of stationarity. Quantitatively, these difference can be evaluated by index 
of non-stationarity (INS) (Xiao et al., 2007): 
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Further, note the result of stationarity test depends on the window length of spectrogram, 
Tn. This dependence can be analyzed by the scale of non-stationarity (SNS). It informs us that 
in which one/ones of considered values for Tn the given threshold in Eq. (10) has been 
exceeded (Xiao et al., 2007): 
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