A signal is stationary over a given observation scale if its spectrum undergoes no evolution in that scale. This assumption leads Bayram and Baraniuk, (2000) to use Multitaper Spectrograms (MS) for studying the time-dependent features of signals as

$$w_{x}(t,f) = \frac{1}{K} \sum_{k=0}^{K} \left| \int x(\tau) h_{k}(-t) e^{-j2\pi f \tau} d\tau \right|^{2}$$
(1)

where $\{h_k(\tau-t), k=1,...,K\}$ stands for the first K Hermite functions, which are used as the short-length windows. Bayram and Baraniuk (2000) used the Hermite functions $h_k^H(t)$ as the sliding windows since they give the best time-frequency localization and orthonormality in the time-frequency domain. Hermite functions can be obtained recursively, as follows

$$\mathbf{h}_{k}^{H}(t) = \pi^{\frac{-1}{4}} (2^{k} k!)^{\frac{-1}{2}} e^{\frac{-t^{2}}{2}} H_{k}(t)$$
(2)

where $\{H_k(t), t \in \mathbb{N}\}\$ represents Hermite polynomials, defined by

$$H_k(t) = 2tH_{k-1}(t) - 2(k-2)H_{k-1}(t)$$
(3)

in which $H_0(t) = 1$ and $H_1(t) = 2t$. These family of windows are mutually orthonormal with elliptic symmetry and maximum concentration in the time-frequency domain. To define the global spectrum of signal, we should take the average of MS as (Xiao et al., 2007)

$$\langle w_{\chi}(t,f)\rangle_{N} = \frac{1}{N} \sum_{t=0}^{N} w_{\chi}(t,f)$$
(4)

For a stationary signal $w_x(t,f)/w_x^{av}(t,f)$ remains almost unchanged at the whole recording window, but in practice fluctuations in this ratio is inevitable. These fluctuations can be defined by a dissimilarity function as

$$c_t^x = D(w_x(t, f), w_x^{av}(t, f)), t = 0, \dots, N$$

$$(5)$$

The significance of fluctuations can also be assessed by using surrogates (Borgnant et al., 2010). A surrogate is artificially produced in such a way that mimics statistical properties of real data. Isospectral surrogates have identical power spectra as the real signal but with randomized phases (Theiler et al., 1992). Once a collection of J synthesized isospectral surrogates, $\{s_j(t), j=1,...,J\}$, are generated, the dissimilarity between local, $w_{s_j}(t,f)$, and global spectra, $w_{s_j}^{av}(t,f)$, for surrogates can be evaluated by (Borgnant et al., 2010)

$$\left\{c_t^{s_j} = D\left(w_{s_j}(t, f), w_{s_j}^{av}(t, f)\right), \ t = 0, \dots, N, \ j = 1, \dots, J\right\}$$
(6)

Borgnat et al., (2010) merged the Kullback-Leibler distance,

$$D_{KL}(A,B) = \int_{\Omega} \left(A(f) - B(f) \right) \log(A(f)/B(f)) df \tag{7}$$

and log-spectral distance, $D_{KL}(A, B)$,

$$D_{LSD}(A,B) = \int_{\Omega} |\log(A(f)/B(f))| df$$
 (8)

in the following combined form

$$D(A,B) = D_{KL}(A,B).\left(1 + D_{LSD}(\tilde{A},\tilde{B})\right) \tag{9}$$

In these equations A and B are two positive distributions and \tilde{A} and \tilde{B} indicate their normalized versions to the unity over the domain. The dissimilarity function D(A,B) enables us to differentiate an amplitude-modulated or frequency-modulated non-stationary signal from a stationary one. Statistical variance $\Theta_1 = var(c_n^x)_{n=1,\dots,N}$ gives the variance of c_n^x s. Similarly, for each one of I synthesized surrogates we can define a separate variance as

$$\left\{\Theta_0(j) = var\left(c_n^{s_j}\right)_{n=1,\dots,N}, \ j=1,\dots,J\right\}$$
(10)

These Θ_0 s can be assumed as a set of realizations of Gamma probability distribution with the following description

$$P(x; a, b) = \frac{1}{b^a \psi(a)} x^{a-1} \exp(-x/b)$$
 (11)

As a null hypothesis original signals is supposed to be stationary but if it violates the predefined threshold γ , null hypothesis is rejected and non-stationarity is assumed, that is

$$\mathcal{J}(x) = \begin{cases} 1 \text{ if } \Theta_1 > \gamma: \text{ non--stationarity} \\ 0 \text{ if } \Theta_1 < \gamma: \text{ stationarity} \end{cases} \tag{12}$$

The threshold value for γ is considered as a confidence level of 95% for probability distribution under the maximum likelihood sense. By comparing Θ_1 and the estimates of Θ_0 , one can define the degree of stationarity. Quantitatively, these difference can be evaluated by index of non-stationarity (INS) (Xiao et al., 2007):

INS=
$$\sqrt{\Theta_1/\frac{1}{J}\sum_{n=1}^{J}\Theta_0(j)}$$
 (13)

Further, note the result of stationarity test depends on the window length of spectrogram, T_n . This dependence can be analyzed by the scale of non-stationarity (SNS). It informs us that in which one/ones of considered values for T_n the given threshold in Eq. (10) has been exceeded (Xiao et al., 2007):

$$SNS = \frac{1}{T} \arg \max_{T_n} \{INS(T_n)\}$$
 (14)