A signal is stationary over a given observation scale if its spectrum undergoes no evolution in
that scale. This assumption leads Bayram and Baraniuk, (2000) to use Multitaper
Spectrograms (MS) for studying the time-dependent features of signals as
wie(t, ) = 2 TK_o| [ (@i (~t)e > 7|’ (1)
where thy(t —t),k = 1, ..., K} stands for the first K Hermite functions, which are used as
the short-length windows. Bayram and Baraniuk (2000) used the Hermite functions h¥ (t) as
the sliding windows since they give the best time-frequency localization and orthonormality
in the time-frequency domain. Hermite functions can be obtained recursively, as follows
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where {H,(t), t € N} represents Hermite polynomials, defined by
Hy (t) = 2tHy_1(t) — 2(k — 2)Hj—1(¢) 3)
in which Hy(t) =1 and H,(t) = 2t. These family of windows are mutually orthonormal with
elliptic symmetry and maximum concentration in the time-frequency domain. To define the
global spectrum of signal, we should take the average of MS as (Xiao et al., 2007)
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For a stationary signal w, (¢, f) /w 2V (t, f) remains almost unchanged at the whole recording
window, but in practice fluctuations in this ratio is inevitable. These fluctuations can be
defined by a dissimilarity function as
e = D(wy(t, )0 (6, 1)), t =0,..,N )

The significance of fluctuations can also be assessed by using surrogates (Borgnant et al.,
2010). A surrogate is artificially produced in such a way that mimics statistical properties of
real data. Isospectral surrogates have identical power spectra as the real signal but with
randomized phases (Theiler et al., 1992). Once a collection of | synthesized isospectral
surrogates, {s;(t),j = 1, ...,]}, are generated, the dissimilarity between local, ws; (t,f), and

global spectra, ws"]‘."(t, f), for surrogates can be evaluated by (Borgnant et al., 2010)

{¢7=p (wsj(t,f),wg”(t,f)), £=0,..,N,j=1,..J} (6)
Borgnat et al., (2010) merged the Kullback-Leibler distance,

Da(4,B) = | (A~ B(Y)loBA)/ B df %
and log-spectral distance, Dk, (4, B),

Diso(4B) = [ lloga(n/BUNI df ®)
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in the following combined form
D(A, B) = Dy, (A, B). (1 + DLSD(A,E)) (9)

In these equations 4 and B are two positive distributions and A and B indicate their
normalized versions to the unity over the domain. The dissimilarity function D(4, B) enables
us to differentiate an amplitude-modulated or frequency-modulated non-stationary signal
from a stationary one. Statistical variance 0; = var(cy;)n=1,. n 8ives the variance of c;s.

Similarly, for each one of ] synthesized surrogates we can define a separate variance as

. Sj .
{@0(]) = var(cn’)nzle, j=1, ...,]} (10)
These Oys can be assumed as a set of realizations of Gamma probability distribution with the
following description
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P(x;a,b) = bai,b(a)x exp( /b) (11)
As a null hypothesis original signals is supposed to be stationary but if it violates the
predefined threshold y, null hypothesis is rejected and non-stationarity is assumed, that is

I = { 0if 0, <y: stationarity

The threshold value for y is considered as a confidence level of 95% for probability distribution
under the maximum likelihood sense. By comparing ©; and the estimates of @,, one can
define the degree of stationarity. Quantitatively, these difference can be evaluated by index
of non-stationarity (INS) (Xiao et al., 2007):

INS=_[6,/33)., 800 (13)

Further, note the result of stationarity test depends on the window length of spectrogram,
T,. This dependence can be analyzed by the scale of non-stationarity (SNS). It informs us that
in which one/ones of considered values for T, the given threshold in Eq. (10) has been
exceeded (Xiao et al., 2007):

SNS= %arg maxr, {INS(T,)} (14)

1if ©, > y: non — stationarity (12)




