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The corrected manuscript is just after the reply to the reviewer 2. The corrections related to 
reviewer 1 appear in blue while those related to the reviewer 2 are in red. 
 
 
Answer to Reviewer 1: 
The manuscript deals with the calibration of variometers by use of previously calibrated observatory 
variometers or, especially, by use of automatic absolute instruments which are capable of providing 
the full magnetic vector in a geographic reference frame with a sufficiently high sampling rate. This is 
especially relevant for the authors, who manufacture the mentioned absolute magnetometers. 
 
Even if new science is not specifically dealt with in the manuscript, the authors expound procedures 
beyond baseline determination that are often disregarded in the daily observatory practice, e.g., 
checking the scale factors or the orthogonality errors of triaxial magnetometers. In my opinion, this 
makes the manuscript suitable for publication in this special issue. 
 
However, there are minor points that should be treated before publication. In particular, the 
manuscript is very concise, and some aspects need a somewhat more extended explanation to be 
useful for the potential reader. 
 
The English is not bad, though it can be improved. The authors can find some hints at the end of this 
document, though they should note that I’m not a native English speaker. 
 
Minor points: 
‐ In equation (2) (and indeed throughout the manuscript) the authors assume that a geographic 
reference frame is used for the variometer. However, a number of observatories legitimately use a 
local geomagnetic reference frame instead. In order not to exclude those observatories, please, 
include a comment on how the subsequent equations would be modified in that case. 
 
This method can be used only for scalar components otherwise the equations would not be linear 
anymore. Fortunately, many variometers are based on a three-axes fluxgate sensor (or a 
combination of 3 single-axes) so that they actually record a scalar product of the magnetic field with 
his sensitive axes. This projection is a scalar component that can be treated like a geographic 
component. For instance, when a variometer is setup in HDZ configuration, the sensor used for 
measuring the declination variations (𝛿𝐷) is put perpendicular to the field in the horizontal plane and 
record the orthogonal projection (𝛿𝐸) of the H component onto its sensitive axis.  
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𝜋
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𝐻
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The same approach can be used for a DFI magnetometer. However, a magnetometer especially 
developed for measuring HDF or DFI may have a limited range for the D and I components. Indeed, 
the principle is based on a zero (or near zero) method. Thus, a compensating coil is not necessary in 
case of correct setup.  
 
‐ Paragraph above equation (3). I think most observers (including myself) assume the scale factors 
are those given by the variometer manufacturers, thus disregarding future changes. Do authors 



suggest that the given scale factors might change in the long term or even be incorrect? If so, and in 
order for the article to alert the potential reader, could the authors give an order of magnitude of the 
error that those observers are making with this assumption? Extend this discussion to the 
orthogonality errors given by the manufacturers. 
 
The purpose of this text is not to contest the quality of the variometers available in the market. We 
did not perform a long terms study of their parameters. However, the scale factor is a major 
parameter affecting the measurement. We think that it is logical to take it into account in this text. 
 
Nevertheless, an observatory may wish to develop its own variometer. Also, if a failure occurs (e.g., 
due to a lightning), it may be necessary to change some parts of the instruments, in particular in the 
electronic. The scale factor as well as other parameters may change. If the repair is performed onsite, 
the variometer re-calibration could be inaccurate. 
 
Concerning the magnitude of errors, it will depend on the magnitude of the daily variations. At high 
latitude, 1% error on the scale factor may be critical. 
 
‐ Equation (4) – (5). Please, clarify this notation: define clearly what are the different k’s and δX’s, and 
what are their units. Notation has been adapted 
 

‐ Equations (8) – (10) use δU, δV, δW while equations (3), (11) and (12) use U, V, W, whereas I think 
they refer to the same variables. If so, please unify the notation. The notation has been unified. 
 
‐ Eq. (10): The plus sign in the right hand side should be a minus. You are entirely right. 
 
‐ Eq. (12): Please, give some more details on how to solve this system. For example, is it solved using 
least‐squares? If so, this method assumes that the baselines (X0, Y0, Z0) are constant, so one cannot 
extend for too many days (otherwise, the baseline conditions may have changed). The use of 
automatic absolute measurements for the variometer calibration probably gives better results if one 
catches disturbed rather than quiet (e.g., Sq) conditions, so that the range of variation is greater and 
somewhat unpredictable. Please, discuss about these points and give some useful hints to the 
reader. 
Indeed, assuming the system to be overdetermined, it is solved in the least-square sense. The real 
baseline is supposed relatively constant so that a small variation will contribute to the residues. 
Therefore, the baseline variation amplitude will limit the method. For the case study, only 4 days 
have been used. Even if, the red X0 baseline in the figure 4 is slightly increasing, the results in Figure 
5 are satisfactory. Please remember that the method does not aim to determine this baseline but 
only the parameters. 
 
The use of an automatic DIFlux provides a lot of samples within a short time. The more the field is 
active, the stronger the effect is on the baselines. However, the absolute measurements during a 
high K period should be considered with caution. The synchronization between instruments may 
become critical. Also, a rapid field variation may induce soil currents. So, the global measurement 
noise may increase, in particular at high latitude. 
 
‐ Figure 2 is not referred in the main body of the manuscript. Corrected 
 
‐ Others: Done 

 In the title, I’ve not been able to find the word “vectorial” in the English dictionary. I think the 
correct adjective is “vector”. 

 P. 1, l. 8: I suggest replacing “they are primordial” with “it is essential”. 

 P. 1, l. 13: Most magnetic observatories are built according to a 



 standardized … 

 P. 1, l. 13‐14: Please, just mention the three instruments at the end of this 

 sentence. 

 P. 1, l. 16: … at a regular interval. 

 P. 1, l. 16: Space between 1 and Hz. 

 P. 1, l. 16: However, ... 

 P. 1, l. 17: … near zero sensors, …. 

 P. 1, l. 21: … e.g., 

 P. 1, l. 21: What kind of motion do authors refer to? 

 P. 1, l. 23: Replace “realized” with “carried out”. 

 P. 1, l. 24: Instruments 

 P. 1, l. 25: First, a scalar magnetometer recording the intensity of the field ‖� � ‖. 

 P. 1, l. 26: Replace “precess” with “perform precession”. 

 P. 2, l.1: Therefore, … 

 P. 2, l. 7: according to 

 P. 2, l. 18‐19: where X, Y and Z are the three conventional Cartesian 

 components of the field, pointing to the geographic North, eastward and 

 downward, respectively. 

 P. 2, l. 27: guaranteed 

 P. 2, l. 28: follows 

 P. 2, l. 31: Replace the last “in” with “into”. 

 P. 3, l. 2: Is this what you really mean? Or: is not available by instruments. I mean that 
absolute DI measurements are not available but they can take advantage of the different 
scalar recording due to the orbital motion. Text has been clarified. 

 orbiting around the Earth. 

 P. 3, l. 5: Replace “this last” with “the latter”. 

 P. 3, l. 11: Sufficiently. 

 P. 3, l. 12‐13: Let us consider an observatory working w i t h a variometer 

 such as a LEMI‐025, in a Cartesian coordinate system. 

 P. 3, l. 14: nanotesla. 

 P. 4, l. 8: as a full … 

 P. 4, l. 10: Rasson (2005) treated … 

 P. 4, l. 23: either 

 P. 4, l. 23: values 

 P. 4, l. 23: sufficiently 

 P. 4, l. 27: Therefore, a vector calibration 

 P. 4, l. 28: The general case, including orthogonality errors, can be expressed 

 by rewriting Eq. (3) as follows 

 P. 5, l. 2: system, where 

 P. 5, l. 7: according to the … 

 P. 5, l. 7: replace “voluntary” with “deliberately”. 

 P. 5, l. 12: observatories, … 

 P. 5, l. 12: 30 min has been made during four days. 

 P. 5, l. 18: Please, be more specific in what particular standards are not met. The baselines 
stability may affect the definitive data. The resulting error may therefore be bigger than the 
5nT tolerated by INTERMAGNET. Text has been adapted. 

 P. 5, l. 20: Finally, the magnetic field … 

 P. 5, l. 23: setup, … 

 P. 5, l. 24: from the “case study” variometer and the reference variometer. 

 P. 5, l. 25: 10 m 



 P. 5, l. 25: Is this what you mean?: “Notice that, even if both are separated by as much as 10 , 
the observatory environment ensures a minimal difference.” Indeed, this is what I mean 

 P. 6, l. 4: … the international standards. 

 P. 6, l. 5: future observatory deployments will be more and more complex, 

 with … 

 Figure 1 caption: dark, and comma after occurred. 

 Figure 4 caption: LEMi-025 baselines. Blue: before processing; red: after processing. 

 Figure 5: Variometer difference between a reference variometer and the “case study” 

variometer. The values are clearly within 1 nT. (Leave a space between 1 and nT). 
 
 
 
Answer to Reviewer 2: 
 

The manuscript describes the new aspect of in-situ calibration of geomagnetic 
observatory variometers, which uses as a reference records the absolute values of 
the Earth magnetic field components measured in the automatic mode. The recently 
developed equipment performs the automatic absolute measurements with a sample 
rate much higher (20-40 times) than that of manually operated instruments. This 
enhancement of the sample rate opens new possibilities of the absolute 
measurements, traditionally exploited for baselines estimation, for calibration of the 
scale factors, the orthogonality and orientation errors of magnetometers. This 
application of the absolute measurements is particularly important for deploying and 
operating unmanned geomagnetic observatories. So, the manuscript addresses the 
relevant topic within the scope of GI. 
 
Authors show (both theoretically and experimentally), that the baselines are sensitive 
to the errors in scale factors and the variometer components misalignment in respect 
to the geographic frame axes. Applying some data processing procedure to the 
record of the arbitrary oriented variometer and the set of the absolute values of the 
magnetic field the transformation matrix is estimated. As a result, the corrected 
variometer data coincide well with that of the properly installed reference instrument. 
Unfortunately, authors had not provided the details of the data processing procedure. 
Further developing this calibration method it would be useful also to answer the 
following questions: 
 
What is theoretical backgrounds of the selected data processing procedure?  
The procedure consists of solving an overdetermined linear system in the least-
square sense. The method has been more developed in the manuscript.  

 
What is the calibration uncertainty of the proposed method? 
Is it possible, for instance, to achieve the scale factors and the orientation errors  

accuracy, which is sufficient to meet the requirements to INTERMAGNET one-
second data?   
The uncertainty and the accuracy are detailed in the case study section. I show that 

the ±2.5𝑛𝑇 requirement for the 1 sec data is met.  
 

What factors are most important for achieving better accuracy? 
 I don’t think that a factor is more important than another but I give some examples 
and magnitudes for both scale factor and orientation in section 2.   

 



If the records of the badly calibrated variometer are used in the absolute 
measurements protocol, how accurate will be the results of this instrument 
calibration? 
I am not sure to understand your last question. The absolute measurements are 
supposed to be correct. So if a completely wrong variometer data is used in the 
absolute protocol without any correction, the amplitude of the error could be, in the 
worst case, the amplitude of the expected daily variation plus the amplitude of the 

 wrong variometer component.   
 
In my opinion, the manuscript could be published after correcting some drawbacks 
and unclear points, the list of which are given below. 
 
p. 3, l. 3-4. 
A comparison of two records for variometer calibration purposes was used by 1 
different authors. Please, add more references on this topic. I suggest to mention the 
book 
J. Jankowski and C. Sucksdorff, IAGA guide for magnetic measurements and 
observatory practice. Warsaw: IAGA, 1996, where a reference record obtained from 
absolute measurements was proposed to use for the variometers calibration 
(subsection 8.2, p. 160, 161): 

“The method is easily used if there is a standard recording station with well 
known characteristics nearby. It will be more elaborate to collect the needed 
data from absolute measurements made during a magnetically active day. The 
method is based on a comparison of recorded natural variations of the 
magnetic field with simultaneously measured or recorded data which have no 
systematic errors. 
... 

The necessary data for the computation of quantities x1, ... , xn can be 

obtained from absolute measurements made during a disturbed day or 
disturbed days. It is a rather laborious and time consuming way, but has the 
advantage that it can be accomplished after the installation of the variometer. 
And every observatory has the facilities for these measurements.” 
 
The reference has been added and the paragraph has been adapted. 
 
p. 3 Eq. (4) and (5) 

What is Xvoltage? If this is a voltage proportional to a measured signal Xreal, as it 

follows from the text in the lines 13-14, then Xdigital is proportional to Xreal squared. 

From other side, Xvoltage should not depend on Xreal, in order to keep kX close to 1, if 
other terms in Eq. (5) are also constant. What are units of the terms in Eq. (4) and 
(5)? 
I apologize, the notation was entirely wrong. The idea is simply to describe the 

acquisition chain. A real signal 𝛿𝑋𝑟𝑒𝑎𝑙 in nT is converted in an electrical signal 
𝛿𝑋𝑣𝑜𝑙𝑡𝑎𝑔𝑒 in Volts. Then, this signal passes through an ADC and converted in digital 

value 𝛿𝑋𝑑𝑖𝑔𝑖𝑡𝑎𝑙. 

 
p. 3 Eq. (6) and (7) 



Probably, the vectors in these equations should be multiplied by element-wise 
manner, yielding the Hadamard product (also known as the Schur product or the 
entrywise product). However, in the given notation it looks like an attempt to obtain a 
matrix product of two column vectors, which is not defined. I suggest to rewrite Eq. 
(6) and (7) using a special symbol for the entry-wise product or representing the 
column vector of the scale factors in the form of a square matrix (similarly to Eq. (3)). 
Meaning of the symbol “*” is not described in the text. This symbol often denotes a 
complex conjugate of a matrix, so it would be better to explain directly its meaning in 
these equations. 
The notation has been adapted and the star symbol described. 
 
p. 4, Eq. (8) 
In my opinion, this equation is valid only for perfectly orthogonal components.  
It is true. A comment has been added 
 
p. 5, Eq. (11) and (12) 
Random components of measurement uncertainty, which are inevitably appeared in 
absolute values as well as variometer data due to instrumental noises or magnetic 
interferences, do not included in Eq. (11), (12). Does it mean that the method used 
for solving these equations is not influenced by this kind of disturbances? Please, 
provide some basic description of the data processing procedure used to estimate 
the calibration coefficients. 
The system is solved in the least-square sense. So, a random error has no effect 
according to the Gauss-Markov theorem. The chapters 3 and 4 have been completed 
with more descriptions as well as more equations. In particular, the way of 
preprocessing the sets of absolute measurements has been explained. The random 
errors, in particular those due to the absolute measurements time-stamp are now 
discussed in a new chapter 5.  
 
As it follows from the text (p. 5, l. 2-4), the variables X, Y, Z, U, V, W represent series 
of values. Then, in Eq. (11) these variables should be in the form of row vectors, but 
in Eq. (12) the same variables have to be in the form of column vectors. Is it correct? 
It is correct. They represent series of values. The notation has been adapted. 
Are the variables X0, Y0, Z0 scalars or vectors? They are considered as constant in 
this equation. So they are scalar values. 
 
What is the reason of using the two notations for matrices and vectors: “[]” in Eq. (3), 
(11), (12) and “()” in other equations? Notation corrected 
In accordance with the journal rules vectors are identified in bold italic font and 
matrices — in bold roman font. Please, correct all equations in order to meet these 
requirements. 
There is Intermagnet Technical Reference Manual, version 4.6 (2012). Is it necessary 
to refer to the previous version of the document? The reference has been adapted. 
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Abstract. The goal of magnetic observatories is to measure and provide vector magnetic field in a geodetic 

coordinate system. For that purpose, instrument setup and calibration are crucial. In particular, scale factor and 

orientation of vector magnetometer may affect the magnetic field measurement. We remember here the concept 

of baseline and demonstrate that it is essential for data quality control. We show how they can highlight a 

possible calibration error. We also provide a calibration method based on high frequency absolute measurement. 

This method determines a transformation matrix for correcting variometer data suffering from scale factor and 

orientation errors. We finally present a practical case whose recovered data have been successfully compared to 

those coming from a reference magnetometer. 

1 Introduction 

Most of magnetic observatories are built according to a standardized or universally adopted scheme (Jankowski 

and Sucksdorff, 1996) including at least a set of 3 major instruments: a variometer, an absolute scalar 

magnetometer and a DIFlux. The different data streams are combined to build a unique vector magnetic field 

data. The variometer is a vector magnetometer, which records variations of the magnetic field components at a 

regular interval (e.g. at 1 Hz). However, this is not an absolute instrument. In particular, reference directions, 

vertical and geographical north, are not available. They usually work as near zero sensors, so that an offset must 

be added to the relative value of each component in order to adjust them and therefore determine the complete 

vector. Those offsets or “baselines” should be as constant as possible but may drift more or less depending on 

the environment stability and device quality. For instance, thermal variations may affect the pillar stability. A 

baseline can also suffer from sudden variation due to instrumental effect after, e.g., a (unwanted) motion like a 

shock due to a maintenance staff or change in the surrounding environment (Fig. 1). A regular determination of 

the baselines is thus necessary to take their change into account. This is the main goal of the well-known 

“absolute measurements” that are carried out by the two other instruments.  

 

First, a scalar magnetometer, recording the intensity of the field |𝐵⃗ |. Most of the time, a proton precession or an 

overhauser magnetometer is used for this task. They exploit the fact that protons perform precession at a 

frequency proportional to the magnetic field according to: 

𝜔𝑝𝑟𝑒𝑐𝑒𝑠𝑠𝑖𝑜𝑛 = 𝛾  ‖𝐵⃗ ‖,          (1) 

 

Where 𝛾, the gyromagnetic ratio, is a fundamental physical constant(Mohr et al., 2014). Therefore, this 

magnetometer can be considered as an absolute instrument.  

 

The last instrument serves to determine the magnetic field orientation according to reference direction. Magnetic 

declination is the angle between True-North and magnetic field in a horizontal plane and inclination is the angle 



between the horizontal plane and the field. In a conventional observatory, a DIFlux (non-magnetic theodolite 

embedding single-axis magnetic sensor) is manipulated by an observer according to a particular procedure 

(Kerridge, 1988) taking about 15 min per measurement. This instrument is also considered as absolute because 

angles are measured according to geodetic reference directions. Due to this manpower dependency, the 

frequency of absolute measurements does not exceed once a day (St Louis, 2012). However, new automatic 

devices such as AutoDIF (Gonsette et al., 2012) close the loop by automatizing the DIFlux measurements 

procedure. Moreover, AutoDIF is able to increase the frequency of baseline determination by performing several 

measurements per day.  

 

After collecting synchronized data from the three instruments, baselines are computed by using the relation, e.g. 

for Cartesian coordinate system: 

[

𝑋0(𝑡)

𝑌0(𝑡)

𝑍0(𝑡)
] = [

𝑋(𝑡)

𝑌(𝑡)

𝑍(𝑡)
] − [

𝛿𝑋(𝑡)

𝛿𝑌(𝑡)

𝛿𝑍(𝑡)
],         (2) 

 

where X(t), Y(t) and Z(t) are, at the time t, the tree conventional components of the field, pointing to the 

geographic North, eastward and downward, respectively. The “0” index refers to the baseline spot measurements 

while 𝛿 refers to the variometer data. The full baselines measurement protocol including a set of 4 absolute 

declinations and 4 absolute inclinations (even if only 2 are required for determining all the unknowns) can be 

 also for spherical and cylindrical configurations (Rasson, 2005). found in the literature, The need for 8 (at last 6) 

 A baseline  is then applied on measurements is justified by the DIFlux sensor offset and misalignment. function

these measurements using various methods such as least-squared polynomial or spline approximation. Finally, 

the vector field is constructed by adding the variometer values to the adopted baselines.  

 

Equation (2) supposes a variometer properly setup with Z axis vertical and X axis pointing toward geographic 

north. The scale factor of each component is also supposed perfect.  

 

A correct orientation is usually ensured by paying attention during the setup step but its stability in time is not 

always evident. Permafrost areas are examples of drifting regions (Eckstaller et al., 2007) where variometer 

orientation is not guaranteed. If the orthogonality errors are neglected, the problem of calibration can be 

expressed as follows: 

 

[
𝑋
𝑌
𝑍
] = 𝑅𝑧(𝛾)𝑅𝑦(𝛽)𝑅𝑥(𝛼) [

𝑘1 0 0
0 𝑘2 0
0 0 𝑘3

] [
𝛿𝑈
𝛿𝑉
𝛿𝑊

] + [

𝑋0

𝑌0

𝑍0

],      (3) 

 

Where the 𝑅𝑥,𝑦,𝑧are an elementary rotation matrix and the 𝑘𝑖 are the scale factors for each component. U, V and 

W are the three variometer output into the sensors reference frame. Calibration procedures can be divided in two 

categories. On one hand, the scalar calibration compares scalar values computed from vector magnetometer to 

absolute scalar values. technique is exploited by satellites because vector reference field is not available. 

Nevertheless, instruments are orbiting around the Earth (Olsen et al., 2003). The different scalar measurements 



from the scalar instrument can therefore be compared to the scalar values computed from the vector instrument. 

On the other hand, the vector calibration directly compares vector magnetometer measurements to reference 

vector value. (Marusenkov et al., 2011) used a second variometer already calibrated as reference. Previously, 

(Jankowski & Sucksdorff, 1996) proposed a comparison between the variometer data and the absolute 

measurements performed during disturbed days in order to calibrate the observatory. The development was made 

for small angles errors (no more than 1°-2°) but they suggested that the method could remain valid for any angle. 

They also pointed out the difficulty to get sufficient strong magnetic activity at low latitude. The method 

presented in this paper is relatively close to the latter except that the automatic DIFlux can generate a lot of 

absolute measurement within a short time (e.g. 48 absolute measurements each 24h) leading to a fast automatic 

calibration process also at low latitude or during quite magnetic period.  

 

The method presented in this document is related to a variometer in XYZ configuration. However, other 

configurations may also be considered. For instance, many observatories setup their magnetometers in HDZ 

configuration where H is the direction of the magnetic north, D the declination and Z the vertical component. 

Working directly with the D component would lead to nonlinear equations. Nevertheless, most of modern 

variometers are based on fluxgate sensors technology. Thus, the recorded signal is the orthogonal projection of 

the field along the fluxgate sensitive axis. The residue (𝛿𝐸) expressed in nT can be used like any geographic 

component and converted afterward into a declination value according to: 

 

𝛿𝐷 =
180

𝜋
asin (

𝛿𝐸

𝐻
),          (4) 

 

The same approach can be used for a DFI magnetometer. However, the reader should keep in mind that all 

variometer axes may not have a compensating coil allowing them to work in full-field. Indeed, recording the D 

and I variations is similar to a DIFlux process. The sensor is quasi-perpendicular to the field so that the residues 

is close to zero. The recorded signal could rapidly saturate. 

2 Calibration error detection 

Before solving the calibration problem, it could be useful to give some clues for detecting required adjustments. 

Indeed, it is difficult, when only examining definitive data, to detect a few nanotesla errors in daily amplitude. 

Direct comparison with other observatories requires them to be close enough while many observatories cannot 

afford to buy an auxiliary variometer. Fortunately, baselines are useful tools for checking data. As described 

below, they are affected by calibration errors and if they are measured with a sufficiently high frequency, 

particular errors can be highlighted. 

2.1 Scale factor error 

Let us consider an observatory working with a variometer such as a LEMI-025, in a Cartesian coordinate system. 

Each sensor converts a real magnetic signal expressed in nanotesla (nT) into a more suitable format (usually a 

voltage). This converted signal passes through an ADC providing, in turn, a digital representation of the initial 

signal. A scale factor in then used to convert true signal into digitized signal. Considering the X component: 



 

𝛿𝑋𝑣𝑜𝑙𝑡𝑎𝑔𝑒 = 𝑘1 𝛿𝑋𝑟𝑒𝑎𝑙 ,          (5) 

𝛿𝑋𝑑𝑖𝑔𝑖𝑡𝑎𝑙 = 𝑘2𝛿𝑋𝑣𝑜𝑙𝑡𝑎𝑔𝑒 = 𝑘 𝛿𝑋𝑟𝑒𝑎𝑙 ,        (6) 

 

Where 𝛿𝑋𝑟𝑒𝑎𝑙is the real magnetic variation in nT toward the X direction, 𝑘1  is a scale factor in Volt/nT 

converting the magnetic field signal into an electrical signal, 𝛿𝑋𝑣𝑜𝑙𝑡𝑎𝑔𝑒  is the image of the field signal  expressed 

in Volts, 𝑘2 is a scale factor in nT/Volt converting the electric signal into a  digital value. 𝑘 = 𝑘2𝑘1  is the 

dimensionless scale factor converting the real magnetic signal into its digital representation. It should be as close 

to 1 as possible. 

 

Supposing now a difference between digital and real variation of a component resulting from a badly calibrated 

scale factor, the baseline measurement will be affected by this error: 

[

𝑋0
∗(𝑡)

𝑌0
∗(𝑡)

𝑍0
∗(𝑡)

] = [

𝑋(𝑡)

𝑌(𝑡)

𝑍(𝑡)
] − [

𝑘𝑥 0 0
0 𝑘𝑦 0

0 0 𝑘𝑧

] [

𝛿𝑋(𝑡)

𝛿𝑌(𝑡)

𝛿𝑍(𝑡)
],       (7) 

[

𝑋0
∗(𝑡)

𝑌0
∗(𝑡)

𝑍0
∗(𝑡)

] = [

𝑋0(𝑡)

𝑌0(𝑡)

𝑍0(𝑡)
] + [

(1 − 𝑘𝑋) 0 0

0 (1 − 𝑘𝑌) 0

0 0 (1 − 𝑘𝑍)
] [

𝛿𝑋(𝑡)

𝛿𝑌(𝑡)

𝛿𝑍(𝑡)
],     (8) 

 

The baseline varies then with The (*) symbol denotes the erroneous baseline affected by a scale factor error. 

respect to its corresponding variometer component value meaning that a correlation exists between both.  

 

The scale factor is usually factory calibrated and supposed to be stable over the time. It is certainly true but there 

are many situations for which the scale factor is not known exactly (e.g., homemade instrument) or differs from 

its factory value (e.g. a repair after a lightning may affect the instrument parameters). The impact of a scale 

factor error also depends on the magnitude of the magnetic activity. One percent error for the H component scale 

factor at mid latitude would lead to no more than 0.5nT during quite day. On the other hand, the same percent 

error at high latitude during a stormy day may affect the data by several nT. 

2.2 Orientation error 

 Now, let us consider once again the same XYZ variometer but this time presenting a default in orientation. That 

could be due, for instance, to a levelling error caused by a bad setup or an unstable basement and/or an X axis 

pointing to any other direction than the conventional one. The given components are affected by this orientation 

error and do not correspond to the expected ones. This is the reason why instruments such as ASMO (Alldregde, 

1960) or any other 3-axes magnetometers will never be considered as a full magnetic observatory. 

 

Rasson (2005) treated the simplified case of a rotation 𝜃 around the Z-axis. The orthogonality between 

In that particular case, the relative real values at time t are given by  components was supposed to be perfect. 

[

𝛿𝑋(𝑡)

𝛿𝑌(𝑡)

𝛿𝑍(𝑡)
] = [

cos(𝜃) − sin(𝜃) 0

sin(𝜃) cos(𝜃) 0
0 0 1

] [

𝛿𝑈(𝑡)
𝛿𝑉(𝑡)

𝛿𝑊(𝑡)
],       (9) 



 

The 𝑋0 baseline, for instance, should be computed as: 

𝑋0 = 𝑋(𝑡) − 𝑐𝑜𝑠 (𝜃)𝛿𝑈(𝑡) + sin(𝜃)𝛿𝑉(𝑡),        (10) 

 

If no correction is applied, the observed baseline get the following form: 

𝑋0
∗ = 𝑋0 − (1 − cos(𝜃)) 𝛿𝑈(𝑡) − sin(𝜃)𝛿𝑉(𝑡),       (11) 

 

In this case, a correlation exists between the baseline and another relative component. Figure 2 shows an 

example of variometer rotated around its vertical by 1.7°. The high resolution baseline (blue) computed by 

means of an automatic DIFlux (AutoDIF) presents the same trend as the 𝛿𝑌 (red) component. The peak-peak 

amplitude is more than 2nT. 

 

The general case is much more complex in particular if the orientation error is combined with a significant scale 

factor error. Indeed, the term (1 − cos(𝜃))  in Eq. (11) may be interpreted either as a scale factor error or as an 

orientation error.  

3 Calibration process 

Absolute measurements, before giving baselines, provide absolute or spot values of the magnetic field. When 

performed with a sufficiently high frequency (e.g. once per hour), the generated magnetogram can be compared 

to the variometer value. Therefore a vector calibration can be done as if a reference variometer was available.  

A DIFlux, either manual such as a Zeiss 010-B or an automatic system like the AutoDIF is affected by the sensor 

offset and misalignments errors. A single spot measurement is therefore computed from a set of 4 declination 

(index 1 to 4) and 4 inclination (index 5 to 8) records.  The 8 synchronized variometer values as well as the 8 

scalar measurements are averaged. Thus, each spot value and corresponding variometer values are computed as 

follows: 

 

𝑋𝑚 =
∑𝐹𝑖

8
cos (

𝐼5+𝐼6+𝐼7+𝐼8

4
) cos (

𝐷1+𝐷2+𝐷3+𝐷4

4
)       

 (12) 

𝑌𝑚 =
∑𝐹𝑖

8
cos (

𝐼5+𝐼6+𝐼7+𝐼8

4
) sin (

𝐷1+𝐷2+𝐷3+𝐷4

4
)       (13) 

𝑍𝑚 =
∑𝐹𝑖

8
sin (

𝐼5+𝐼6+𝐼7+𝐼8

4
)          (14) 

[

δUm

δVm

δWm

] = [

∑𝛿𝑈𝑖
∑𝛿𝑉𝑖
∑𝛿𝑊𝑖

]           (15) 

 

Where, the “i” index refers to the records 1 to 8 synchronized with the 4 declinations and the 4 inclinations. 

 

The general case, including orthogonality errors can Let us consider a series of n samples build from Eq. (12-15). 

be expressed by rewriting Eq. (3) as follows: 



[

𝑿𝒎

𝒀𝒎

𝒁𝒎

]

𝑻

= [

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

] [

𝜹𝑼𝒎

𝜹𝑽𝒎

𝜹𝑾𝒎

]

𝑻

+ [

X0

Y0

Z0

],        

 (16) 

 

where 𝑋𝑚 =  𝑋𝑚1, … , 𝑋𝑚𝑛 
𝑇 , 𝑌 =  𝑌𝑚1, … , 𝑌𝑚𝑛 

𝑇 , 𝑍 =  𝑍𝑚1, … , 𝑍𝑚𝑛 
𝑇 are the time series of X, Y and Z spot 

values recorded by means of the absolute instruments and  𝛿𝑈 =  𝛿𝑈𝑚1, … , 𝛿𝑈𝑚𝑛 
𝑇 , 𝛿𝑉 =  𝛿𝑉𝑚1, … , 𝛿𝑉𝑚𝑛 

𝑇 , 

 𝛿𝑊 =  𝛿𝑊𝑚1, … , 𝛿𝑊𝑚𝑛 
𝑇   are the three components time series of the variometer. Because the period of 

acquisition is relatively small (a few days is enough), the baseline values 𝑋0, 𝑌0, 𝑍0 are supposed to be constant. 

For each component X, Y and Z, the problem consists of solving a linear system, where a time series of spot 

values and the quasi-synchronized three variometer components are the input. Assuming the system to be 

overdetermined, the latter is solved in the least-square sense. Equation (17) gives the coefficients corresponding 

the X component (others are similar):  to 

 

[

𝑎
𝑏
𝑐
𝑋0

] = (𝐀𝐓𝐀)−1𝐀𝐓𝑿          (17) 

 

where 𝐀 =  𝜹𝑼 𝜹𝑽 𝜹𝑾 𝟏 .  Once the whole coefficients matrix determined, the variometer data are 

 redressed:  

 

[
𝜹𝑿
𝜹𝒀
𝜹𝒁

]

𝑻

= [

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

] [
𝜹𝑼
𝜹𝑽
𝜹𝑾

]

𝑻

,         (18) 

 

Equation (18) refers to all variometer data and not only the “averaged” data obtained from Eq. (15). For each set 

of absolute measurements, the 3 corrected baselines can be processed in a conventional way. Considering a XYZ 

variometer, the 𝑍0 baseline is first computed then 𝑋0 and 𝑌0: 

 

Z0 =
F5+F6+F7+F8

4
sin (

I5+I6+I7+I8

4
) −

δZ5+δZ6+δZ7+δZ8

4
,      (19) 

Hi =  Fi
2 − (Z0 + δZi)

2,          (20) 

X0 =
H1+H2+H3+H4

4
cos (

D1+D2+D3+D4

4
) −

δX1+δX2+δX3+δX4

4
,      (21) 

Y0 =
H1+H2+H3+H4

4
sin (

D1+D2+D3+D4

4
) −

δY1+δY2+δY3+δY4

4
,      (22) 

 

A function (polynomial, cubic-spline, …) is then fitted on them. Finally, the magnetic vector is build according 

to Eq. ( 2). 

4 Case study 

A variometer LEMI-025 has been installed in Dourbes magnetic observatory. The device has deliberately been 

setup in a non-conventional orientation as shown in Fig. 3. The levelling and orientation default have been 



strongly exaggerated compared to those encountered in conventional observatories, but if we consider possible 

future automatic deployment using systems such as GyroDIF (Gonsette et al., 2017), the orientation could be 

completely random. An AutoDIF installed in the Dourbes absolute house has been used for performing absolute 

declination and inclination measurements because of its high frequency measurement capability. An overhauser 

magnetometer recorded the magnetic field intensity at the same time-stamp. One measurement every 30 min has 

been made during four days from July 20
th

 to July 24
th

 2016.  The mean Kp over this period is 2 while the 

maximum is 5 (only 3 periods of 3 hours reached the level 5).  

 

Before processing, the baseline computation clearly highlights the setup error as shown in Fig. 4. Actually, such 

big variations do not meet the international standards (St Louis, 2012) and could discard the concerned magnetic 

observatory. Indeed, most observatories perform absolutes D&I measurements no more than once a day 

introducing an aliasing in the baselines computations. The amplitude of the baselines variations in Fig. 4 is such 

that the 5nT tolerated errors are not met anymore. However, after solving the system for each components and 

applying transformation matrix to the variometer data, baseline computation gives more correct data. In this 

case, a cubic-spline has been used for fitting to the baseline measurements. 

 

A second LEMI-025 is installed in the variometer house of Dourbes observatory. This one is correctly setup, so 

it could be used for a posteriori comparison. Figure 5 shows the difference between vector components built 

from the “case study” variometer and the reference variometer. Notice that, even if both are separated by as 

much as 10 m, the observatory environment should ensure minimal difference. If we exclude the borders for 

which the cubic splines baselines are badly defined, the three curves meet the INTERMAGNET 1-second 

standards requiring an absolute accuracy not worse than ±2.5𝑛𝑇. Y and Z curves remain within±0.44𝑛𝑇. The X 

component is slightly more noisy with an upper and lower borders being +1.11𝑛𝑇 and −0.38𝑛𝑇 respectively. 

The mean differences are 0.06nT, 0.009nT and 0.002nT for X, Y and Z curves respectively and the 

corresponding standard deviations (1𝜎  ) are 0.26nT, 0.15nT and 0.23nT respectively. 

5 Discussion 

In this paper, the measurement errors have not been taken into account. In particular, absolute measurements are 

performed sequentially so that the magnetic field could have changed between the first and the last measurement. 

Equations (12-14) do not take the variations between the mean declination time and the mean inclination time 

into account. Indeed, using Eq. (19-22) with the badly setup variometer for compensating the magnetic activity 

would lead to a non-linear system. Nevertheless, and AutoDIF achieves a complete protocol of absolute 

measurement is performed within less than 5 minutes including the Geographic North measurement at the 

beginning. Because of the high number of measurements during a few days, the error due to this delay can be 

considered as random. Assuming also the measurement errors as a random noise, theirs effect are therefore 

  cancelled according to the Gauss-Markov theorem.

 

(Jankowski and Sucksdorff, 1996) suggested to take advantage of a disturbed day in order to maximize the effect 

of a setup error. However, the global measurement noise may increase, in particular at high latitude. Indeed, the 

synchronization between instruments may become critical. Also, a rapid change in the magnetic field may induce 



soil current that could affect both the DIFlux and the variometer. Fortunately, as the noise is random, and it is 

even truer during chaotic magnetic activity, it has no effect on the final results. 

 

Equation (16) supposes a constant baseline so that a small variation will contribute to the residues. However, the 

use of an automatic DIFlux provides a lot of measurements within a short time period. The case study has been 

performed during only 4 days within which the baselines variations are reasonably considered small. Their 

contribution to the error can therefore be considered negligible compared to the possible scale factor and 

orientation parameters effects. Anyway, INTERMAGNET recommends performing absolute measurements with 

an interval ranging from daily to weekly  (St Louis, 2012). 

6 Conclusion 

The baselines and absolute measurements are powerful tools for checking data quality and for highlighting 

possible gross errors. The present paper has demonstrated that even with a strong setup error, it is possible to 

recover good magnetic data meeting the international standards. It also contributes to automatic installation and 

calibration of magnetic measurement systems. Future observatory deployments will be more and more complex, 

with automatic dropped systems in unstable environments. Antarctic, seafloor or even Mars (Dehant et al., 2012) 

are the challenges of Tomorrow. They will require not only automatic instruments but also regular and automatic 

control. 
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Figure 1: Baseline example computed from conventional manual measurement (dark blue) and automatic system 

(light blue).In the middle of 2013, a baseline jump corresponding to an instrumental effect occurred, proving that 

regular absolute measurement are crucial.  

 

 

Figure 2: Blue: 𝑿𝟎 baseline computed from high frequency absolute measurements. Red: Variometer Y component 

from LEMI-025. Because the variometer is not properly oriented, a strong correlation appears between 𝑿𝟎 and 𝜹𝒀.  



 

Figure 3: LEMi-025 installed in Dourbes magnetic observatory. The red arrow indicates the True-North direction. 

The orange arrows highlight the bubble levels saturation. 

 

 

Figure 4: LEMi-025 baselines Blue: before processing. red: after processing. 

 



 

Figure 5: Variometer difference between a reference variometer and the “case study” variometer. The value are 

clearly within 1 nT. 

 


