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Abstract. In 2013 a project was started by the geophysical centre at Dourbes to install a fully automated magnetic 

observatory in Antarctica. This isolated place comes with specific requirements: unmanned station during six months, low 

temperatures with extreme values up to - 50 °, minimize power consumption, satellite bandwidth limited to 56 Kbit/sec. The 

ultimate aim is to transfer real-time magnetic data every second: vector data from a LEMI-25, absolute F measurements from 

a GEMS proton magnetometer and absolute magnetic inclination and declination measurements (5 times a day) with an 10 

automated DI-flux. Traditional file transfer protocols (for instance FTP, mail, Rsync) show severe limitations when it comes 

to real-time. After evaluation of pro and cons of the available real-time internet of things (IoT) protocols and seismic 

software solutions known to UGCS, we chose to use message queuing telemetry transport (MQTT) and receive the one 

second data with a negligible latency cost and no loss of data. Each individual instrument sends the magnetic data 

immediately after capturing it and arrives at approximately 300 milliseconds after sending which corresponds with the 15 

normal satellite latency. 

1 Introduction 

Princess Elisabeth Antarctica (Figure 1 : right PEA), located on Utsteinen Nunatak in Queen Maud Land (71°57’ S 23° 20’ 

E), is a Belgian scientific polar research station, which went into service on February 15, 2009. It is approximately 220 km 

from the Antarctic coast, which makes it an ideal logistics hub for field exploration in the 20°- 30° E sector of Antarctica. 20 

The station is unmanned during the Antarctic winter period but each year from November until February there is a crew 

available. In 2013 a project was started by the geophysical centre at Dourbes to install a fully automated magnetic 

observatory in Antarctica. Three instruments will be used (Figure 2): 

 LEMI-25 (Figure 2 : left) variometer registers 1 HZ magnetic variation data along three axes XYZ.  

 GEMS GSM-90 (Figure 2: middle) proton magnetometer registers 1HZ absolute magnetic field measurements. 25 

 AUTODIF (Figure 2: right) automated DIflux theodolite which will execute 5 times a day a magnetic inclination 

and declination measurement.( Rasson, J. et al, August 2011). 

The data needs to be sent to the observatory in Belgium. Recently the need for real-time data transfer becomes an important 

topic in the operation of magnetic observatories: 

 Space weather forecasts need real-time availability of magnetic data. 30 

 In the oil industry real-time magnetic data is used to monitor and correct directional drilling trajectories. 

 Intermagnet is investigating the possibilities to achieve real-time data transfer  

The project in Antarctica gives the opportunity to achieve real-time data transfer. To be able to talk about real-time it is 

necessary that we come to a mutual agreement of what “real-time” exactly means. Let’s consider following definition of 

real-time as stated in the Cambridge dictionary: 35 

Real-time is a term that applies to the communication, presentation or reporting of events on the same time that they actually 

happen. However computers that collect and transmit data over a network have a time delay due to automated data 

processing and network transmission. For example, the LEMI-25 introduces a known delay of 0.3 s (LVIV, October 2014)) 
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before the data is available and can be send over the internet. Because of this time delay the correct term to use is near real-

time (NRT). 

Usually, magnetic data collection projects use file transfer protocols .Most of the time data is written to a file and this one is 

then transmitted over the internet. Popular solutions are: 

 Rsync: is a linux utility that synchronizes directories over the network. Rsync typically uses SSH connections to 5 

encrypt and secure data transfer. It will only update the necessary differences. 

 FTP: Classical file transfer protocol that makes it able to copy files to a remote server. When security and 

encryption is needed FTP can be extended with certificates ( FTPS)  

 SFTP: same as FTP but underlying connection is different. The security is done over SSH as in Rsync which comes 

with a latency impact compared to the pure FTP(S) but is simpler to use behind firewalls and highly secured. 10 

 Mail: traditional mail can be used to send the file in attachment to a destination. As it is mail there is always an 

uncertainty of delivery and an unknown latency 

All these protocols have their value as being standard and easy to use but in terms of near real-time they add a serious 

overhead. First of all the files need to be created and secondly the protocols are focussed on sending a file correctly but not 

really on fast transfer with limited overhead. Using these protocols to attain near real-time data transfer is against their 15 

intended purpose and all of them are still bandwidth intensive. While these protocols can always serve as fall-back 

mechanism, it is time to investigate other protocols that minimize the time it takes to read the data from the instrument and 

send it to the data centre. 

2 Near real-time data transfer protocols 

Previous protocols are all based on file transfer. Instead of working with intermediate files, we need protocols that can send 20 

data packages over the network, immediately after they are read from the instrument. Although we focus on the near real-

time aspect, other aspects are equally important for this project: 

 The solution needs to work on a limited bandwidth satellite connection. 

 The solution needs to have some level of guarantee delivery. 

To apply to all this requirements the considered solutions in the next chapters are message oriented solutions, which make it 25 

possible for software components to communicate with each other by using predefined messages. 

2.1 Protocols used in seismology 

In seismology near real-time data transfer was always an important requirement. At USGS two software packages are 

mentioned that promise near real-time data transfer: earthworm and antelope (proprietary). A third one that has gained 

popularity is called SeisComP3. These three packages are offering more than just data transfer and often come with 30 

seismologic data visualization and analysis tools. They are often full blown server implementations (with tools and database 

to configure) and although they have different possibilities to communicate data, each of them comes with the possibility to 

send data to it in the form of SeedLink packages. SeedLink is a data transfer protocol defined by the incorporated research 

institutions for seismology (IRIS). As stated on their website: The SeedLink protocol is a robust data transmission intended 

for use on the internet or private circuits that support TCP/IP. The protocol is robust in that clients may disconnect and 35 

reconnect without losing data, in other words transmissions may be resumed as long as the data still exist in the servers 

buffer. Requested data streams may be limited to specific networks, stations, locations and/or channels. All data packets are 

512-byte miniSEED records. Normally 1HZ magnetic data can be packaged in +/- 30 bytes (a timestamp and 3 real values). 

When it comes to limited bandwidth connections on satellite links, sending packages that are only filled with 10 % of useful 

data becomes a waste of resources. MiniSEED records are defined with equally spaced time series in mind, which matches 40 
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to the continuous measurements of variometers and scalar instruments. For Automated DI-flux measurements, which are not 

evenly spaced in time, miniSEED records aren’t favourable. We can also observe that the user community of these solutions 

aren’t that big compared to solutions offered by alternative open source projects (see S2.2.1), so good sample code and 

support is not easy to find. Finally we can state that using these kinds of solutions to transfer magnetic data is a valuable 

option if on your servers you have already earthworm, antelope or SeisComP3. If not it will come with a big learning curve 5 

and sometimes poorly documented support. 

2.2 The internet of things. 

Today we live in a world where everything is connected and all devices become “smart”. All these devices register data and 

send data over the internet:  tv’s, smart phones, smart thermostats, smart lights, surveillance systems, robotic lawn mowers, 

etc. This inter-networking of physical devices is called the internet of things (IoT). Thanks to this increase in commercial 10 

applications we can profit of the evolution of data transfer protocols to apply to these emerging needs. The application often 

comes with similar requirements as the ones we have for instruments on remote locations: 

 Need to run on small devices 

 Minimize power usage ( often devices or on battery ) 

 Run on unreliable networks ( Wi-Fi, mobile networks ) 15 

 Send regularly small messages. 

Another advantage of this evolution is that there is a large open source community driven by sharing knowledge and solving 

problems together. On this base a search on the internet on data transfer resulted in three protocols that were suitable to 

establish the needed near real-time data transfer: 

 Advanced message queueing protocol ( AMQP ) 20 

 Streaming text oriented protocol ( STOMP )  

 Message queue telemetry transport ( MQTT ) 

First of all these three mentioned protocols are not implementations, they are just program language-agnostic descriptions 

how clients and server can communicate on an asynchronous level. Two of them: MQTT and AMQP are even evolved into 

an OASIS open standard, with the advantage that different implementations of client libraries and servers have emerged in 25 

both open source and commercial landscape. To be able to choose among these protocols it is important to look at their 

specifications and their targeted audience. While taken the definition from there respectively websites:  

AMQP was designed as a replacement for existing proprietary messaging middleware (IBM, Microsoft). It is a full blown 

business to business message protocol with focus on reliability, interoperability and security. The protocol makes it possible 

to apply flexible routing of messages, with transaction support. The protocol is at his lowest level an efficient, binary, peer-30 

to-peer protocol for transporting messages between two processes over a TCP/IP connection. 

MQTT is a machine-to-machine (M2M)/"Internet of Things" connectivity protocol. It was designed as an extremely 

lightweight publish/subscribe messaging transport. It is useful for connections with remote locations where a small code 

footprint is required and/or network bandwidth is at a premium. It is a binary protocol over TCP/IP. 

STOMP is a protocol that is completely text based making it more in favour to be used over HTTP. It stays very simple and 35 

has no knowledge of transactional context meaning that there is no direct support for any guarantees of delivery (Mesnil J et 

al; August 2014). 

protocol lightweight binary Quality of Service Designed for low-bandwidth networks 

AMQP No Yes Yes No 

MQTT Yes Yes Yes Yes 

STOMP Yes No Not out of the box No 

Table 1: comparison of message protocols 
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The table shows that among these three protocols MQTT is the most appropriate to solve the data transport for the 

installation in Antarctica 

3 MQTT explained 

Message Queue Telemetry transport was designed and documented by Andy Stanford-Clark of IBM and Arlen Nipper of 

Cirrus Link Solutions (a company specialized in real-time telemetry solutions) in 1999. The design principles were to 5 

minimize network bandwidth and device resource requirements whilst also attempting to ensure reliability and some degree 

of assurance of delivery (Lampkin V et al. 2012). In 2011 it was used by Facebook to reduce their phone-to-phone delivery 

of the messenger from several seconds to hundredths of seconds. In 2013, IBM submitted MQTTv3.1 to the organization for 

the advancement of structured information standards (OASIS) making it available for everybody to use and implement it into 

their applications (Bank A.et al. October 2014). From that moment on MQTT has definitely evolved to one of the most used 10 

protocols in the internet of things applications.  

3.1 Publisher and Subscribers 

The MQTT protocol is a publish/subscribe mechanism which needs a broker (Figure 3) to communicate between those who 

send messages (Publishers) and those who receive messages (Subscribers). Publishers and subscribers are completely 

decoupled. This means that publisher and subscriber don’t have to know about each other and are completely independent. A 15 

subscriber doesn’t need to be up and running to be guaranteed to receive the messages from the publisher. For each message 

published there can be multiple subscribers to receive the messages. We could compare it with a subscription to a newsletter. 

Messages are published on topics. In MQTT topics are UTF-8 strings, which are defined on the broker (see S3.2) to filter 

messages for each client. A topic consists of one or more topic levels. The forward slash is used to separate each level within 

the topic tree e.g.: myhome/floor/room/temperature. The publisher on this topic will be a small device with a temperature 20 

sensor which reads on regular intervals a temperature and publishes this on the topic. The messages are byte messages which 

form the contract between publisher and subscriber. There is no formal way to document a message structure but it comes 

down to describe how the received byte array needs to be interpreted. From now on anyone who needs the temperature can 

subscribe to the topic and will receive the byte message. Using topic levels to define a topic tree becomes interesting when a 

subscriber is interested in messages at a certain level in the tree. For example a subscriber that wants to get all messages 25 

related to one particular room can use multilevel wildcard # in his subscription. A subscription to myhome/floor/room/# will 

result in receiving all messages to all sub levels of myhome/floor/room. If however a subscriber is interested in the 

temperature in all rooms on a certain floor, he can use a single level wildcards + and subscribe to 

myhome/floor/+/temperature. Publishers and subscribers are software components. To make MQTT work we can use client 

libraries which are available in multiple programming languages (C++, java, C#, python, etc).  30 

3.2 The MQTT broker 

The client libraries for publisher and subscribers are lightweight, but before they can communicate with each other you need 

another piece of software called the broker. You can find many different broker implementations (some open-sourced, some 

proprietary).  

The main responsibilities of the broker are: 35 

 Decouple the publishers from subscribers 

 Make topics available for publishers and subscribers  

 Ensure receiving and correct delivery of the MQTT messages 

 Configure security 
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The choice of the correct broker will depend on lots of factors (ease of use, needed scalability, own preferences etc.). In our 

particular case the load is relatively low and the choice was made on ease of use and lightweight deployment. That’s why we 

used mosquitto which did fulfil our requirements. 

There are different ways of deploying a broker: 5 

 Deploy and use one broker on the sensor site ( remote site ) 

 Deploy and use one broker on the data centre site  

 Use of two brokers one on each site and configure a bridge between the two brokers.(Figure 4)  

 

The bridge solution is the most elaborated one where decoupling is optimized between publisher and subscriber. The usage 10 

of a bridge puts the responsibility of guarantee delivery, buffering and redelivery on the configuration of the bridge. To 

bridge the brokers you will link topics from one broker to the other one by means of configuration. As a consequence 

continuous monitoring of bridges is necessary. In the setup at Antarctica, we opted for one broker on the data centre site at 

Dourbes for the simple reason that we had full control on the firewall settings and servers on this site and no upfront 

knowledge of the possibilities at Antarctica. 15 

 

3.3 Quality of service 

The foot print of MQTT is tiny and the overhead small what makes it a fast protocol. Beside speed and overhead, we also 

need some control on the guarantee of delivering a message in MQTT.  

MQTT introduces three levels of quality of service (QOS). 20 

 QOS 0: lowest level of assurance. The message will be send at most once, but it will not survive failures. It will 

never introduce duplicates. Often it is referred to as “fire and forget”. 

 QOS 1: The message will be send at least once. This quality of service introduces the possibility of duplicate 

messages (it is the subscriber that can receive messages more than once). It will survive connection loss. The QOS 

requires an acknowledgement back from the server before the client can discard the message.  25 

 QOS 2: The message is send exactly once. The subscriber will be guaranteed to receive the message exactly one 

time. This QOS survives connection loss but introduces extra layer of communication messages between publisher 

and broker ( two extra messages to assure that message was received ) 

 

QOS 0 is by all means the fastest and the least band-width consuming. However acknowledge messages are 1 byte so 30 

the overhead compared with the advantage of being sure the message arrives, is negligible and often the preferred way 

of sending messages. QOS can be set on each individual message, so it is simple to change QOS between messages. 

In our case we use QOS 1 to publish messages. 

4. Application to an automated observatory in Antarctica 

In February 2014 a first mission was planned to locate a place where it is possible to install a magnetic observatory. This 35 

resulted in finding the best spot to place a magnetic observatory at approximately 500 meters of the station. The location is 

near to the Utsteinen mountain to make it possible to fix the station on solid rocks such that the pillars will not move. A 

radome (Figure 1: left) was chosen because of the fact that it is not magnetic, it doesn’t block the gps signals and its form 

reduces greatly wind loads. The radome has some limitations to be taken into account: it is not heated, power supply will be 

delivered from the station but consumption should be minimized as much as possible. 40 
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During the season of 2014-2015 a second mission took place. The main goals were to install the first two instruments for 

continuous monitoring of the magnetic field and establish a way to communicate the data back to Belgium. For 

measurements of the magnetic field vector a LEMI-25 (Figure 2: left) was selected for its known temperature stability. 

Because the radome is not heated the LEMI-25 got adapted by the supplier so that it can withstand the cold temperatures. 

The second instrument is a GEMS GSM-90 magnetometer (Figure 2: middle) that measures continuously the magnetic field 5 

strength. Both instruments have a sampling rate of 1Hz and come with a windows program that constantly logs the 

measurements in a file. They are equipped with their own GPS and samples are delivered with a timestamp. Because of the 

limitations of the radome, we don’t use windows pc’s but looked into the possibilities of small ARM processors. Thanks to 

popularity of Rasberry PI, these small cheap ARM processors gain in popularity and opened up a whole new market. We 

decided to use the Beaglebone Black (Figure 5): a small Texas Instruments single board computer. It is comparable with the 10 

Raspberry but it is rather designed for robotics having the following advantages: 

• The hardware is completely open-sourced so adaptations or own productions are fairly easy. 

• A rugged version for extended temperature range ( -40°C – 80 °C) is available . 

• It comes with two 46 pin GPIO headers 

• It has on board 4 Gigabyte of internal storage making the boot from SD card not necessary. 15 

As these boards are linux based computers the needed software has been rewritten and both instruments are controllable via 

a web-interface. The radome itself has a diameter of 4,380 meter and the instrument emplacement was optimized to limit 

interference which resulted into the layout shown in Figure 6. The electronics of both instruments, network switch and 

Beaglebones are placed on a shelf (+/- 2,30 m above  the ground) as far as possible from the instruments ( Figure 7 ). All 

installed instruments and electronics are guaranteed to work at -40°C, except the electronics of the LEMI which is has a 20 

minimum operating temperature of -20°C. Therefore it is placed in a box that is heated when temperature drops lower than -

20°C. A pillar is foreseen to place an AUTODIF (Gonsette et al. 2013) in the next season to establish a completely 

automated magnetic observatory. As shown on the schematics depicted in Figure 8 the radome is connected to the Princess 

Elisabeth station with fiber-optics. Princess Elisabeth station has a permanent internet link and limits each scientific project 

to 56 Kbit/s. To transfer the data MQTT is used. A mosquitto broker is installed at Dourbes (Figure 8). This MQTT broker is 25 

only accessible from the public ip address of the Princess Elisabeth station. The broker is configured to allow access by 

username and password. Each username has access to predefined topics and access can be limited to read or write. The 

security is defined on the broker by means of access control lists. At the broker site two subscribers listen permanently to the 

incoming messages and store the data in a database. 

In the radome in Antarctica two publishers send second data: 30 

 

 Vector instrument LEMI-25 sends each second a byte message of 16 bytes.  

 Scalar instrument GEMS-GSM 90 sends each second a message of 8 bytes. 

 Both use a QOS 1 which guarantees that messages arrive at least once 

 35 

The programs on the beaglebones (Figure 5) are written to publish the magnetic data immediately after it is read from the 

serial port of the device. This makes it possible to publish data captured in the radome on Antarctica directly to a broker 

installed on a server in Belgium. The topic structure used is: iagacode/instrumentid/samplerate: pea/lemi0001/sec. This 

means that this topic receives 1 second vector data of the LEMI-25 located at Princess Elisabeth station Antarctica (PEA). 

The topic tree contains the key that identifies the metadata of the instrument which implies that the message doesn’t need to 40 

contain the metadata. The topic corresponds with one up front defined byte message structure, which can be used to receive 

and read near real-time data coming from Antarctica. 

Every MQTT connection is made once and never closed. The library used (in our case Node.js library: MQTT.js) will 

automatically reconnect if connection gets lost. To be able to detect that the connection is stale, there is an important 
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parameter called keep alive. The keep alive interval is the longest possible period of time in seconds, which broker and 

publisher can endure without sending a message. If the broker doesn’t receive any messages after the keep alive interval the 

broker will disconnect. The publisher can detect a connection broken by sending a ping message after the keep-alive interval. 

If the broker doesn’t respond the publisher will try to re-establish the connection. In our project the keep alive is set to 10 

seconds. On protocol level this means that as long as we assume there is a connection we can send messages and the 5 

connection can be broken without noticing it for maximum 10 seconds. On this unnoticed stale connection, we could 

continue to send messages of QOS1 that will never be acknowledged by the broker (maximum 10 because of the keep alive 

which assures to close the stale connection after 10 seconds). After the connection is re-established these messages will be 

send automatically again by MQTT because of the assurance of QOS 1. If we however try to send a message during the time 

we have no connection (for example a physical problem on the satellite itself or the server in Belgium) the MQTT library 10 

will respond with an error and it is up to the software to deal with this not send messages. To cope with this problem we just 

used a memory queue which stores 4 hours of second data. This means that from now on we can live with connection 

failures up to 4 hours (keep in mind that we lost our real time promises here). Once a connection is re-established the four 

hours of not transmitted data is send to the broker.  

So during one year data transmission we evaluated that the mean delivery time is approximately 300 ms which corresponds 15 

with standard satellite delays (no real impact due to the MQTT protocol). Connections got lost +/- 10 times a month (small 

failures of a couple of seconds), which are re-established and data is resend without any problem. During one year of 

experience we had only one big connection lost mainly because of the fact that a fibre optic cable at Belgium got broken. It 

took two days to recover the connection. To recover these two days of data we felt back to standard FTP of the recorded files 

at Antarctica. 20 

5. Conclusions 

Realizing near real-time data transfer today is feasible with standard open protocols and open source tools. It doesn’t come 

for free because it introduces the need of managing and monitoring a message broker. All research was done in 2014, when 

we re-evaluate the taken decisions we can see that today MQTT has evolved to a mature near real-time data transfer protocol 

widely adopted. Although we can’t neglect that other new promising alternatives need to be investigated: 25 

 MQTT-SN: MQTT for Sensor Networks is aimed at embedded devices on non-TCP/IP networks, such as Zigbee. 

MQTT-SN is a publish/subscribe messaging protocol for wireless sensor networks (WSN), with the aim of 

extending the MQTT protocol beyond the reach of TCP/IP infrastructure for Sensor and Actuator solution 

 CoAP: The Constrained Application Protocol (CoAP) is a specialized web transfer protocol for use with constrained 

nodes and constrained networks in the Internet of Things. The protocol is designed for machine-to-machine (M2M) 30 

applications such as smart energy and building automation. 

A third mission will be executed in the next season to install an AUTODIF. This will eventually result in the realisation in 

the first fully automated magnetic observatory with near real time data transfer. 

References 

Mesnil J., Mobile and web messaging:  ISBN-13: 978-1491944806, ISBN-10: 1491944803, August 2014 35 

Banks A. and Gupta R.: MQTT version 3.1.1, . OASIS Standard . 29 October 2014 

Rasson, J. L. and Gonsette, A.: The Mark II Automatic Diflux, Data Sci. J., 10(August), IAGA169-IAGA173, 

doi:10.2481/dsj.IAGA-24, 2011 

Gonsette, A., and Rasson, J. AUTODIF: Automatic Absolute DI Measurements, pp. 16-19, proceedings of the XVth IAGA 

Workshop on Geomagnetic Observatory Instruments, Data Acquisition and Processing. Boletin ROA No. 03/13, 2013. 40 



8 

 

Lampkin V. Tat Leong W., Olivera L., Rawat S, Subrahmanyam N , Xiang R.: Building Smarter Planet Solutions with 

MQTT and IBM WebSphere MQ Telemetry, ISBN: 0738437085, September 2012 

Intermagnet 1-second standard flux-gate magnetometer user manual rev 1.6, LVIV October 2014 

 

 5 

 

Figure 1: Magnetic radome and Princess Elisabeth Station 
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Figure 2: LEMI-25 (left) GEMS GSM-90 (middle)  AUTODIF (right) 
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Figure 3: MQTT broker 
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Figure 4: bridging brokers 

 

 

Figure 5: Beaglebone black ARM processor 5 

 

Figure 6: positions of instruments inside the radome 
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Figure 7: Electronics on a shelf in the radome 

 

 

Figure 8: data transfer  5 


