
Seasonal prediction skill of East Asian summer monsoon in CMIP5-Models 1 

Bo Huang,* Ulrich Cubasch, Christopher Kadow 2 

Institute of Meteorology, Freie Universität Berlin, 3 
Carl-Heinrich-Becker-Weg 6-10, 12165 Berlin, Germany 4 

Email: huangb@zedat.fu-berlin.de 5 

 6 

ABSTRACT 7 

The East Asian summer monsoon (EASM) is an important part of the global climate system 8 

and plays a vital role in the Asian climate. Its sub-seasonal-to-seasonal predictability is a 9 

long-standing issue within the monsoon scientist community. In this study, we analyse the 10 

seasonal (with six months lead time) prediction skill of the EASM rainfall and its associated 11 

general circulation in non-initialised and initialised simulations for the years 1979-2005 12 

performed by six prediction systems (i.e., the BCC-CSM1-1, the CanCM4, the GFDL-13 

CM2p1, the HadCM3, the MIROC5 and the MPI-ESM-LR) from the Coupled Model 14 

Intercomparison Project phase 5 (CMIP 5). We find that the simulation of the zonal wind is 15 

significantly improved in initialised simulations compared to non-initialised simulations. 16 

Based on the knowledge that zonal wind indices can be used as potential predictors for the 17 

EASM, we selected an EASM index based upon the zonal wind for further analysis. The 18 

assessment show that the GFDL-CM2p1 and the MIROC5 add prediction skill in simulating 19 

the EASM index with initialisation, the BCC-CSM1-1, the CanCM4, and the MPI-ESM-LR 20 

change the skill insignificantly, and the HadCM3 indicates a decreased skill score. The 21 

different response to the initialisation can be traced back to the ability of the models to 22 

capture the ENSO (El Niño-Southern Oscillation)-EASM coupled mode, particularly the 23 

Southern Oscillation-EASM coupled mode. As it is known from observational studies, this 24 

mode links the oceanic circulation and the EASM rainfall. In summary, we find that the 25 

GFDL-CM2p1 and the MIROC5 are capable to predict the EASM on a seasonal time-scale 26 

after initialisation.  27 
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1.  INTRODUCTION 30 

The Asian monsoon is the most powerful monsoon system in the world due to the thermal 31 

contrast between the Eurasian continent and the Indo-Pacific Ocean. Its evolution and 32 

variability critically influences the livelihood and the socio-economic status of over two 33 

billion residents who live in the Asian monsoon dominated region. It encompasses two sub-34 

monsoon systems (e.g., South Asian monsoon-SAM and East Asian monsoon-EAM; Wang, 35 

2006). In summer time (June-July-August), the EAM, namely, the East Asian summer 36 

monsoon (EASM) occurs from the Indo-China peninsula to the Korean Peninsula and Japan, 37 

and shows strong intraseasonal-to-interdecadal variability (Ding and Chan, 2005). Thus, 38 

accurate predictions of the EASM is an important and long-standing issue in climate science. 39 

To predict the EASM, there are two approaches, statistical prediction and dynamical 40 

prediction, respectively. The statistical method seeks the relationship between the EASM and 41 

a strong climate signal (e.g., ENSO, NAO; Wang et al., 2015;Wu et al., 2009;Yim et al., 42 

2014). This method is limited by the strength of the climate signal. The other method is 43 

dynamical prediction. It employs climate model to predict the EASM (Kang and Yoo, 44 

2006;Lee et al., 2010;Sperber et al., 2001;Wang et al., 2008a;Yang et al., 2008;Kim et al., 45 

2012). Two kinds of climate models have been developed in the past few decades, 46 

atmosphere general circulation model (AGCM) and coupled atmosphere-ocean general 47 

circulation model (AOGCM). Both the two kinds of model have been used to predict the 48 

EASM (Kang et al., 2004;Wang et al., 2005;Wang et al., 2007;Wang et al., 2008a;Zhou et al., 49 

2009). For AGCMs, the lower boundary conditions (e.g. SST: sea surface temperature) is 50 

required. An external ocean model is applied to predict the SST. Then the prescribed SST is 51 

employed as the lower boundary conditions to force the AGCMs. However, this method 52 

shows a low prediction skill over East Asia, especially in monsoon season (Wang et al., 53 

2005;Barnston et al., 2010), because the AGCMs fail to produce the realistic SST-rainfall 54 

relationships in monsoon season (Wang et al., 2005;Wang et al., 2004). Therefore, the 55 

monsoon community endeavours to predict the EASM with AOGCMs (Zhou et al., 56 

2009;Wang et al., 2008a;Jiang et al., 2013;Kim et al., 2012). 57 

AOGCMs have proved to be the most valuable tools in predicting the EASM (Zhou et 58 

al., 2009;Wang et al., 2008a;Jiang et al., 2013;Kim et al., 2012). However, the performance 59 

of AOGCMs in predicting the EASM on seasonal time-scale strongly depends on their ability 60 

to reproduce the teleconnection between EASM and SST (Sperber et al., 2001) and the 61 

initialisation (Wang et al., 2005). In the coupled model inter-comparison project (CMIP) 62 
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phase 3 (CMIP3; Meehl et al., 2007) era, the models simulate not only a too weak SST-63 

monsoon teleconnection (Kim et al., 2008;Kim et al., 2011), but also a too weak East Asian 64 

zonal wind-rainfall teleconnection (Sperber et al., 2013). Compared to CMIP3 models, CMIP 65 

phase 5 (CMIP5; Taylor et al., 2012) models improve the representation of monsoon status 66 

(Sperber et al., 2013). Therefore, given initial conditions, the CMIP5 models have potential to 67 

predict the EASM.  68 

Initial conditions play a vital factor in predicting the EASM on sub-seasonal to 69 

seasonal time-scale (Kang and Shukla, 2006). Under current set up of initialisation, the 70 

CMIP5 models show the ability to predict the SST indicator (i.e., El Niño-Southern 71 

Oscillation-ENSO index) up to 15 months in advance (Choi et al., 2016;Meehl et al., 72 

2014;Meehl and Teng, 2012). This extended prediction skill of the ENSO suggests that the 73 

EASM can be predicted on a seasonal time-scale if the dynamic link between the ENSO and 74 

monsoon circulations is well represented in these models. Two scientific questions will be 75 

addressed in this study: 1. How realistic are the initialized CMIP5 models in representing the 76 

EASM? 2. To what extend reproduce the model’s teleconnection between the ENSO and the 77 

EASM? 78 

In this paper, we inter-compare the influence of the initialisation on the capability of 79 

the CMIP5 model to capture the EASM and the ENSO-EASM teleconnections. The model 80 

simulations, comparison data and methods are introduced in Section 2. Section 3 describes 81 

the seasonal skill of the rainfall predictions and the prediction of the associated general 82 

circulation of the EASM. The mechanism causing the differential response of the models to 83 

the initialisation is presented in Section 4. The discussions are shown in Section 5. Section 6 84 

summaries the findings of this paper. 85 

2.  MODELS, DATA AND METHODS 86 

2.1 MODELS AND INITIALISATION  87 

In this study, we assess six prediction systems which have contributed to CMIP5 in historical 88 

and decadal hindcast simulations (Table 1). We employ these six prediction systems of 89 

CMIP5 in our study which have performed a yearly initialisation. Only these systems provide 90 

data to study the effect of initialisation on seasonal time-scale. The BCC-CSM1-1 has three 91 

ensemble members which are initialised on 1st September, 1st November and 1st January, 92 

respectively. The initialisation of HadCM3 takes place on each pre-year 1st November while 93 

the other four systems are initialised on 1st January. The full-field initialisation is named 94 

HadCM3-ff to distinguish it from the anomaly initialisation in HadCM3. Because of spatial 95 
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coverage of the precipitation observations, we select the satellite era (1979 to 2005) for our 96 

study. The first lead year results from initialised simulations are used to assess the seasonal 97 

predicting skills of the CMIP5 models. The initialisation strategies of all modelling groups 98 

from CMIP5 decadal prediction experiments have been summarised in Meehl et al. (2014). 99 

The brief configurations of the six prediction systems are presented in Table 2. 100 

2.2 COMPARISON DATA 101 

The main datasets which are used for the comparison in this study include: (1) 102 

monthly precipitation data from the Global Precipitation Climatology Project (GPCP; Adler 103 

et al., 2003); (2) monthly circulation data from ECMWF Interim re-analysis (ERA-Interim; 104 

Dee et al., 2011); and (3) monthly mean SST from National Oceanic and Atmospheric 105 

Administration (NOAA) improved Extended Reconstructed SST version 4 (ERSST v4; 106 

Huang et al., 2015). All the model data and the comparison data are remapped onto a 107 

common grid of 2.5ºx2.5º by bi-linear interpolation to reduce the uncertainty induced by 108 

different data resolutions. 109 

2.3 METHODS 110 

We apply the pattern correlation coefficient (PCC) to analyse the model performance 111 

in capturing the spatial pattern with reference to the observational data. It is the Pearson 112 

product-moment coefficient of linear correlation between a single variables on two different 113 

spatial patterns (Barnett and Schlesinger, 1987). There are two types of pattern correlation 114 

statistics: centred and un-centred. The centred (un-centred) statistic measures the similarity of 115 

two patterns after (without) the removal of the global mean. We choose the un-centred PCC 116 

in our study due to the fact that centred correlations alone are not sufficient for the attribution 117 

of seasonal prediction (Mitchell et al., 2001). The un-centred PCC is defined by: 118 

 119 

where n and m are grids on longitude and latitude, respectively. F(x,y) and A(x,y) represent two 120 

dimensions comparison and validating value. w(x,y) indicates the weighting coefficient for 121 

each grid. An equal weighting coefficient was applied due to the study area is East Asia 122 

where we can omit the convergence of the longitudes with the latitudes    123 

We also employ the anomaly correlation coefficient (ACC) to analyse the model 124 

performance in reproducing observational variations. The ACC is the correlation between 125 
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anomalies of forecasts and those of verifying values with the reference values, such as 126 

climatological values (Drosdowsky and Zhang, 2003). Its definition is:  127 

 128 

 129 

 130 

where n is the number of number of samples, and Fi, Ai, Ci represent comparison, verifying 131 

value, and reference value such as climatological value, respectively. Also,  is the mean of 132 

fi,  is the mean of ai, and wi indicates the weighting coefficient. If the variation of anomalies 133 

of comparison dataset is perfectly coincident with that of the anomalies of verifying value, 134 

ACC will take 1 (the maximum value). Otherwise, if the variation is completely reversed, 135 

ACC is -1 (the minimum value). 136 

The root-mean-square-error (RMSE) is employed to check the model deviation from 137 

the observation and its definition is:  138 

 139 

where Di represents the deviation between comparison and verifying value, wi is the 140 

weighting coefficient for each sample, and n is the number of samples. If RMSE is closer to 141 

zero, it means that the comparisons are closer to the verifying values. 142 

3.  SEASONAL PREDICTION SKILL OF THE EASM 143 

The EASM has complex spatial and temporal structures that encompass the tropics, 144 

subtropics, and midlatitudes (Tao and Chen, 1987;Ding, 1994). In late spring, an enhanced 145 

rainfall pattern is observed in the Indochina Peninsula and in South China Sea. Then, the 146 

rainfall belt advances northwards to the south of China. In early summer, the rainfall 147 

concentration occurs in the Yangtze River Basin and in southern Japan, namely, the Meiyu 148 
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and Baiu season, respectively. The rainfall belt can reach as far as northern China, the Korean 149 

Peninsula (called the Changma rainy season) and central Japan in July (Ding, 2004;Ding and 150 

Chan, 2005). 151 

The EASM is characterised by both seasonal heterogeneous rainfall distribution and 152 

associated large-scale circulation systems (Wang et al., 2008b). In the summer season, water 153 

moisture migrates from the Pacific Ocean to central and eastern Asia, which is carried by the 154 

southwest surface winds. Generally, a strong summer monsoon year is followed by 155 

precipitation in northern China, while a weak summer monsoon year is usually accompanied 156 

by heavier rainfall along the Yangtze River basin (Zhou and Yu, 2005;Ding, 1994).  157 

The prediction skill of the EASM rainfall and the associated general circulation 158 

variable (i.e., zonal and meridional wind, and mean sea level pressure) is presented in Figure 159 

1. These variables are resource of monsoon index (Wang et al., 2008b). Table 3 shows the 160 

contribution of these variables in the EASM. Their abbreviations follow the guideline of 161 

CMIP5 (Taylor et al., 2012). Without initialisation, the models show an acceptable 162 

performance in capturing the observed spatial variation (with high PCC) of the six variables, 163 

but a poor performance in simulating their temporal variation (with low ACC). After 164 

initialisation, we can see that the models show a higher ACC of the six variables. However, 165 

there is no improvement in simulating the spatial variation (PCC). The improvement of 166 

simulating the temporal variation of zonal winds (i.e., ua850 and ua200) is larger than of the 167 

rainfall and meridional winds. One can exploit this improvement by using, a general 168 

circulation based monsoon index as a tool to predict the EASM. 169 

In the recent decades, more than 25 general circulation indices have been produced to 170 

research the variability and long-term change of the EASM. Wang et al. (2008) classified 171 

them into five categories and discussed their ability to capture the main features of the 172 

EASM. They found that the Wang and Fan index (hereafter WF-index; 1999) shows the best 173 

performance in capturing the total variance of the precipitation and three-dimensional 174 

circulation over East Asia. We, thus, select the WF-index for the further analysis. Its 175 

definition is standardised average zonal wind at 850 hPa in (5°-15ºN, 90°-130ºE) minus in 176 

(22.5°-32.5ºN, 110°-140ºE). The WF-index is a shear vorticity index which often described 177 

by a north-south gradient of the zonal winds. In positive (negative) phase of the WF-index 178 

years, two strong (weak) rainfall belts locate at the Indo China Peninsula-to-the Philippine 179 

Sea and the northern China-to-the Japan Sea, and a weak (strong) rainfall belt occurs from the 180 

Yangtze river basin-to-the south of Japan. 181 
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In the non-initialised simulations, none of the models captures the observed EASM, as 182 

indicated by an insignificant ACC (Figure 2). The CanCM4 and the GFDL-CM2p1 simulate 183 

a negative phase, while the BCC-CSM1-1, the HadCM3, the MIROC5 and the MPI-ESM-LR 184 

all predict a positive phase of the EASM. After initialisation, the CanCM4, the GFDL-185 

CM2p1 and the MIROC5 improve the skill to simulate the EASM, the MPI-ESM-LR 186 

displays hardly any reaction, while the BCC-CSM1-1 and the HadCM3 shows a worse 187 

performance than before. Particularly with anomaly initialisation, the HadCM3 significantly 188 

loses its prediction skill in capturing the EASM. The CMIP5 models show different response 189 

to the initialisation in predicting the EASM on seasonal time-scale. To understand the 190 

potential reason, we analysis the principle components of six variables which contribute to 191 

the EASM. The details are presented in Section 4.   192 

4.  EASM-ENSO COUPLED MODE IN CMIP5 193 

We employ the EOF method to analyse the leading EOF modes of six meteorological 194 

variables anomaly in the EASM region (0°-50ºN, 100°-140ºE). The first EOF mode of 195 

rainfall is characterised by a “sandwich” pattern which shows sharp contrast between the 196 

prominent rainfall centre over Malaysia, the Yangtze River valley and the south of Japan, and 197 

the enhanced rainfall over the Indo-China Peninsula and the Philippine Sea. The increased 198 

precipitation is associated with cyclones in the low-level (850 hPa) and anti-cyclones in the 199 

upper level (200 hPa) (not shown). 200 

The correlation coefficient of the first eigenvector and the associated principal 201 

component (PC) between the model simulation and the observation in the non-initialised and 202 

the initialised simulation is presented in Figure 3. The models can capture the eigenvector of 203 

the first EOF for the six meteorological fields in non-initialised simulation. However, they 204 

fail to reproduce the associated PC of the first leading EOF mode. Compared to the non-205 

initialised simulation, the models show no improvement to simulate the first leading EOF 206 

mode of rainfall, but exhibit a better performance in representing the first leading EOF mode 207 

of zonal wind. The CanCM4 and the GFDL-CM2p1 capture the first PC of ua850, but not the 208 

other five models. For the zonal wind at 200 hPa, the BCC-CSM1-1 fails to simulate its first 209 

EOF mode while the other six models can. Then, only the GFDL-CM2p1 accurately 210 

simulates the first EOF eigenvectors and the associated PC of va850, which cannot be 211 

reproduced in the other models. None of the models captures the spatial-temporal variation of 212 

the first EOF mode of meridional wind at 200 hPa. In addition, the GFDL-CM2p1 and the 213 
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MIROC5 simulates a reasonable leading EOF mode and associated PC of psl, while the other 214 

models do not capture it. 215 

Figure 4 shows the fractional (percentage) variances of the six variables of the first 216 

EOF mode with the total variances from the observation, and the model simulation in non-217 

initialisation and in initialisation. The observational total variances for the pr, the ua850, the 218 

ua200, the va850, the va200 and the psl, are depicted by the first lead EOF mode in 21.2, 219 

59.0, 36.5, 20.6, 28.5 and 50.0 percent, respectively. The models simulate the comparable 220 

explanatory variances, which show a slight discrepancy for the first leading mode in the non-221 

initialisation. From non-initialised simulation to initialised simulation, the CGCMs tend to 222 

enhance the first EOF lead mode due to the fact that they show larger fractional variances of 223 

the total variances of the six variables. We note that the CanCM4 and the GFDL-CM2p1 224 

significantly increase the fractional variances from non-initialisation to initialisation. 225 

The ENSO is a dominant mode of the inter-annual variability of the coupled ocean 226 

and atmosphere climate system, which has strong effects on the inter-annual variation of the 227 

EASM (Wu et al., 2003;Wang et al., 2000). Wang et al. (2015) summarised the first EOF 228 

lead mode of the ASM is the ENSO developing mode. As previously mentioned, the first 229 

EOF mode is improved in the initialised simulations, compared to the non-initialised 230 

simulation. This also can be found in the ENSO indices (Figure 5). Niño3.4 is calculated by 231 

the SST anomaly in the central Pacific (190-240ºE, 5ºS-5ºN), while the southern oscillation 232 

index (SOI) is based upon the anomaly of the sea level pressure differences between Tahiti 233 

(210.75ºE, 17.6ºS) and Darwin (130.83ºE, 12.5ºS). To calculate the SOI, we interpolate the 234 

grid data to the Tahiti and the Darwin point by bilinear interpolation. 235 

 The individual members and their ensemble mean of the six models show a low 236 

correlation coefficient to the observational Niño3.4 and the SOI in the non-initialised 237 

simulations. Niño3.4 and SOI represent the oscillation of two components in the earth 238 

system, the ocean and the atmosphere, respectively. These two indices show strong anti-239 

phase in the observation, with correlation range is -0.94 to -0.92 for four seasons (DJF, 240 

MAM, JJA, SON; Figure 5). The models describe the anti-correlation between Niño3.4 and 241 

the SOI, but weaker than observed. Compared to the non-initialisation, there is a significant 242 

improvement for models in capturing the observational Niño3.4 and the SOI after 243 

initialisation. Initialisation lowers the spread of ensemble members in predicting Niño3.4 and 244 

the SOI in all the six models. However, initialisation does not prominently change the 245 

correlation between Niño3.4 and the SOI in the model simulations. With initialisation, the 246 
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GFDL model shows a weaker correlation between Niño3.4 and the SOI, while the HadCM3 247 

models illustrate a stronger correlation. It is worth mentioning that after initialisation the 248 

ensemble mean of each model outperforms its individual members in capturing Niño3.4 and 249 

the SOI. The correlation coefficient between Niño3.4 and the SOI of MME is ~0.8 in both 250 

non-initialised and initialised simulations.  251 

The EASM strongly relies on the pre-seasons ENSO signal due to the lag response of 252 

the atmosphere to the SST anomaly (Wu et al., 2003). The lead-lag correlation coefficients 253 

between the EASM index and the Niño3.4, and the SOI from JJA(-1) to JJA(+1) are 254 

illustrated in Figure 6. The pre-season Niño3.4 (SOI) presents a significant negative 255 

(positive) correlation to the EASM, while the post-season Niño3.4 (SOI) shows a notable 256 

positive (negative) correlation. This lead-lag correlation coefficient phase is called the 257 

Niño3.4-/SOI-EASM coupled mode (Wang et al., 2008b). In the non-initialised cases, the 258 

models do not produce the teleconnection between the ENSO and the EASM. The CanCM4, 259 

the HadCM3 and the MPI-ESM-LR fail to represent the lead-lag correlation coefficient 260 

difference between pre-/post-season ENSO and EASM. The BCC-CSM1-1, the GFDL-261 

CM2p1 and the MIROC5 capture the coupled mode of the ENSO and the EASM. However, 262 

the pre-season ENSO has a weak effect on the EASM. Compared to the non-initialised cases, 263 

the MIROC5 and the GFDL-CM2p1 both demonstrate a significant improvement in 264 

simulating Niño3.4 (SOI)-EASM coupled mode in the initialisation. The BCC-CSM1-1, the 265 

HadCM3, and the HadCM3-ff show no improvement, with insignificant correlation between 266 

Niño3.4 (SOI) and the EASM. The CanCM4 and the MPI-ESM-LR indicate a higher 267 

correlation between the EASM and the simultaneous-to-post-season ENSO than to the pre-268 

season ENSO. 269 

5. DISCUSSION 270 

The model exhibits a better performance in simulating the general circulation of the 271 

EASM with initialisation. Thus, initialisation is helpful in forecasting the EASM on a 272 

seasonal time-scale. There are two initialisation methods in our study, full-field initialisation 273 

and anomaly initialisation (Table 1). The full-field initialisation produces more skilful 274 

predictions on the seasonal time-scale in predicting regional temperature and precipitation 275 

(Magnusson et al., 2013;Smith et al., 2013). But, for predicting the EASM, there is no 276 

significant difference between the two methods. We can see that both the GFDL-CM2p1 and 277 

the MIROC5 have a significant improvement in capturing the EASM, with full-field and 278 

anomaly initialisation, respectively. Only the HadCM3 was initialised by the two 279 
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initialisation techniques. However, both these two initialised techniques are producing poor 280 

predictions of the EASM with no major differences. 281 

The initialisation strategy of the models is to initialise with the observed atmospheric 282 

component (i.e., zonal and meridional wind, geopotential height, etc.) and the SST (Meehl et 283 

al., 2009;Meehl et al., 2014;Taylor et al., 2012). With initialisation, the SST conveys its 284 

information via the large heat content of ocean to the coupled system. Therefore, an index 285 

indicating an ocean oscillation like Niño3.4 shows a seasonal-to-decadal prediction skill 286 

(Choi et al., 2016;Luo et al., 2008;Jin et al., 2008). The models studied here demonstrate a 287 

prediction skill in simulating Niño3.4 and the SOI due to this effect. The change of the 288 

correlation between Niño3.4 and the SOI is insignificant from non-initialised to initialised 289 

simulations. We therefore conclude that the relationship between Niño3.4 and the SOI 290 

depends more on the model parameterisation than on the initial condition. 291 

Wang et al. (2015) found that the second EOF mode of ASM is the Indo-western 292 

Pacific monsoon-ocean coupled mode, the third is the Indian Ocean dipole (IOD) mode, and 293 

the fourth is trend mode. The Indo-western Pacific monsoon-ocean coupled mode is the 294 

atmosphere-ocean interaction mode (Xiang et al., 2013;Wang et al., 2013), which is 295 

supported by positive thermodynamic feedback between the western North Pacific (WNP) 296 

anticyclone and the underlying Indo-Pacific sea surface temperature anomaly dipole over the 297 

warm pool (Wang et al., 2015). The IOD increases the precipitation from the South Asian 298 

subcontinent to south-eastern China and suppresses the precipitation over the WNP (Wang et 299 

al., 2015). It affects the Asian monsoon by the meridional asymmetry of the monsoonal 300 

easterly shear during the boreal summer, which can particularly strengthen the northern 301 

branch of the Rossby wave response to the south-eastern Indian Ocean SST cooling, leading 302 

to an intensified monsoon flow as well as an intensified convection (Wang and Xie, 303 

1996;Wang et al., 2003;Xiang et al., 2011;Wang et al., 2015). We noted that the models 304 

simulate a reasonable first EOF mode (Figure 3), but illustrate no skill in capturing the other 305 

EOF leading modes (not shown). We argue that the models cannot well represent the 306 

monsoon-ocean interaction, even with initialisation. Then, the models do not simulate the 307 

third EOF leading mode of the EASM since the predictability of the IOD extends only over a 308 

three-month time-scale (Choudhury et al., 2015). The current initialisation strategies (both 309 

anomaly and full-field) enhance the ENSO signal in the model simulations with higher 310 

explained fraction of variance. Kim et al. (2012) described a similar finding in ECMWF 311 

System 4 and NCEP Climate Forecast System version 2 (CFSv2) seasonal prediction 312 
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simulations. This overly strong modulation of the EASM by ENSO due to the models well 313 

predict ENSO on seasonal time-scale with initialisation (Kim et al., 2012;Jin et al., 2008).  314 

It is worth mentioning that it was an extremely weak monsoon and strong El Niño 315 

year in 1998. The CanCM4, the GFDL-CM2p1, the MIROC5 and the MPI-ESM-LR have the 316 

ability to simulate the extreme monsoon event, while the BCC-CSM1-1, and the HadCM3 do 317 

not capture it even with initialisation. There is potential for the BCC-CSM and the HadCM 318 

models to improve the teleconnection between the ENSO and the EASM. 319 

This study has discussed six CMIP5 models in predicting the EASM on seasonal 320 

time-scale. The six models are earth system coupled models which present a better SST-321 

monsoon teleconnection than IRI (International Research Institute for Climate and Society) 322 

models (Barnston et al., 2010) and CMIP3 models (Sperber et al., 2013). The CMIP5 models 323 

show a comparable prediction skill as current seasonal forecast application systems, the 324 

ECMWF System and the NCEP CFS, respectively. Both the two application systems have 325 

low prediction skill of EASM (Jiang et al., 2013;Kim et al., 2012).  326 

We have compared six CMIP5 systems with their respective initialisation strategies. 327 

The GFDL-CM2p1 and the MIROC5 have the potential to serve as seasonal forecast 328 

application system even with their current initialisation method. These models have great 329 

potential to optimise the SST-EASM interaction simulation performance to improve their 330 

seasonal prediction skill of the EASM.  331 

6.  SUMMARY 332 

Six earth system models from CMIP5 have been selected in our study. We have analysed the 333 

improvement of the rainfall, the mean sea level pressure, the zonal wind and the meridional 334 

wind in the EASM region from non-initialisation to initialisation. The low prediction skill of 335 

the summer monsoon precipitation is due to the uncertainties of cloud physics and cumulus 336 

parameterisations in the models (Lee et al., 2010;Seo et al., 2015). The models show a better 337 

performance in capturing the inter-annual variability of zonal wind than the precipitation after 338 

initialisation (Figure 1). Thus, the zonal wind index is an additional factor which can indicate 339 

the prediction skill of the model. When, we calculate the WF-index in both non-initialised 340 

and initialised simulations, the GFDL-CM2p1 and the MIROC5 show a significant 341 

advancement in simulating the EASM from non-initialised to initialised simulation with a 342 

lower RMSE and a higher ACC (Figure 2). There is only a slight change in the WF-index 343 

calculated from the BCC-CSM1-1, the CanCM4 and the MPI-ESM-LR data after 344 
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initialisation. Compared to the non-initialised simulation, the HadCM3 loses prediction skill, 345 

especially with anomaly initialisation. 346 

To test the possible mechanisms of the models’ performance in the non-initialisation 347 

and the initialisation, we have calculated the leading mode of the six fields which are 348 

associated to the EASM. The models demonstrate a better agreement with the observational 349 

first EOF mode in the initialised simulations (Figure 3). The first lead mode of zonal wind at 350 

200 hPa shows a significant improvement in the models except the BCC-CSM1-1 with 351 

initialisation. Therefore, a potential predictor might be an index based upon the zonal wind at 352 

200 hPa. Compared to the non-initialisation, the models enhance the first EOF mode with a 353 

higher fraction of variance to the total variance after initialisation (Figure 4). The first EOF 354 

mode of the EASM is the ENSO developing mode (Wang et al., 2015). We have analysed the 355 

seasonal simulating skill of Niño3.4 and the SOI in each model (Figure 5). The models show 356 

a poor performance in representing Niño3.4 and the SOI in the non-initialised simulation. 357 

Initialisation improves the model simulating skill of Niño3.4 and the SOI. The initialised 358 

simulations decrease the spread of ensemble members in the models. We found that there is 359 

no significant change in the models reproducing the correlation between Niño3.4 and the SOI 360 

from non-initialisation to initialisation. 361 

In general, the pre-season warm phase of the ENSO (El Niño) leads to a weak EASM 362 

producing more rainfall over the South China Sea and northwest China, and less rainfall over 363 

the Yangtze River Valley and the southern Japan; the cold phase of the ENSO (La Niña) 364 

illustrates a reverse rainfall pattern to El Niño in East Asia. The pre-season Niño3.4 (SOI) 365 

exhibits a strong negative (positive) correlation to the EASM, while the correlation between 366 

the post-season Niño3.4 (SOI) and the EASM illustrates an anti-phase as the pre-season 367 

(Figure 6). In the non-initialised simulations, the models do not capture Niño3.4-/SOI-EASM 368 

coupled mode. We found that only the MIROC5 has the ability to represent the Niño3.4-369 

EASM coupled mode with initialisation. For the SOI-EASM coupled mode, the GFDL-370 

CM2p1 and the MIROC5 capture it in the initialisation, while the BCC-CSM1-1, the 371 

HadCM3, the HadCM2-ff, the CanCM4 and the MPI-ESM-LR do not. Therefore, we argue 372 

that the differential response to the initialisation in the CMIP5 models due to their differential 373 

depiction of ENSO-EASM coupled mode. 374 
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Table 1. Details of the prediction systems investigated in this study. 578 

System  Institute Resolution Non-

Initialisation 

Initialisation Reference 

  Atmospheric Oceanic Members Members Type  

BCC-

CSM1-1 

 Beijing Climate Center, 

China 

T42L26 1lonx1.33lat 

L40 

3 3 Full-field Wu et al. (2014) 

CanCM4  Canadian Centre for Climate 

Modelling and Analysis, 

Canada 

T63L35 256 x 192 

L40 

10 10 Full-field Arora et al. (2011) 

GFDL-

CM2p1 

 Geophysical Fluid 

Dynamics Laboratory, USA 

N45L24 1lon x 0.33-

1lat L50 

10 10 Full-field Delworth et al. (2006) 

HadCM3  Met Office Hadley Centre, 

UK 

N48L19 1.25x1.25 

L20 

10 10 + 10 Full-field and 

Anomaly 

Smith et al. (2013) 

MIROC5  Atmosphere and Ocean 

Research Institute, Japan 

T85L40 256x192 L44 5 6 Anomaly Tatebe et al. (2012) 

MPI-ESM-

LR 

 Max Planck Institute for 

Meteorology, Germany 

T63L47 GR15 L40 3 3 Anomaly Matei et al. (2012) 

 579 
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Table 2. Brief summaries of initialisation strategies used by modelling groups in the study. ECMWF: European Centre for Medium-Range 580 

Weather Forecasts; GODAS: Global Ocean Data Assimilation System; NCEP: National Centers for Environmental Prediction; S: Salinity; 581 

SODA: Simple Ocean Data Assimilation; T: Temperature. 582 

system  Atmosphere  Ocean  Internet 

BCC-CSM1-1  -  integration with ocean T nudged to SODA product 

above 1500 m 

 

 

http://forecast.bcccsm.ncc-cma.net/ 

CanCM4  ECMWF re-

analysis 

 off-line assimilation of SODA and GODAS subsurface 

ocean T and S adjusted to reserve model T-S 

 http://www.cccma.ec.gc.ca/ 

GFDL-CM2p1  GFDL re-analysis  assimilates observations of T, S from World Ocean 

Database 

 

 

https://www.gfdl.noaa.gov/multide

cadal-prediction-stream/ 

HadCM3  ECMWF re-

analysis 

 off-line ocean re-analysis product  http://cerawww.dkrz.de/WDCC/C

MIP5/ 

MIROC5  -  integration using observational gridded ocean T and S  http://amaterasu.ees.hokudai.ac.jp/ 

MPI-ESM-LR  NCEP re-analysis  off-line ocean hindcast forced with NCEP  http://cerawww.dkrz.de/WDCC/C

MIP5/ 

 583 

 584 

 585 
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 586 

Table 3.  Description of the six variables which contribute to the EASM. The abbreviation of these variables is followed to the guidelines of 587 

CMIP5.     588 

variable Standard name Contribution to the EASM 

pr Precipitation Precipitation distribution indicates the strength of EASM 

psl Mean sea surface pressure Differences of mean sea surface pressure between land and ocean lead 

to EASM  

ua850 Zonal winds over 850 hPa A component of low-level cyclone which transports vapor from ocean 

to land 

va850 Meridional winds over 850 hPa  As ua850, and contributes to Hadley’s cell 

ua200 Zonal winds over 850 hPa A component of upper-level Hadley’s cell 

va200 Meridional winds over 850 hPa  As ua200 
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 589 

 590 

Fig.1. Taylor diagrams display of pattern (PCC) and temporal (ACC) correlation 591 

metrics of six variables between observation and model simulation in the EASM 592 

region (0-50ºN, 100-140ºE). Each coloured marker represents a model, i.e., the BCC-593 

CSM1-1 (black), the CanCM4 (green), the GFDL-CM2p1 (red), the HadCM3 (blue), 594 

the MIROC5 (brown), the MPI-ESM-LR (light-sea-blue), and the HadCM3-ff 595 

(orange). The GPCP was employed as the reference data for precipitation (i.e., pr) 596 

while wind fields (i.e., ua850, va850, ua200 and va200) and mean sea level pressure 597 

(i.e., psl) were compared by ERA-Interim re-analysis. 598 

599 
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 600 

 601 

 602 

Fig. 2. Performance of the model ensemble member (hollow marker) and its ensemble 603 

mean (solid marker) on the EASM index. The abscissa and ordinates are the anomaly 604 

correlation coefficient (ACC) and the root-mean-square-error (RMSE), respectively. 605 

The observed EASM index is calculated by zonal wind at 850 hPa from the ERA-606 

Interim re-analysis data. The black dot lines indicate the significant level at 0.1. The 607 

vertical black line represents the correlation between the simulating and the 608 

observational EASM index is 0.  609 

610 
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 611 

 612 

 613 

Fig. 3. Portrait diagram display of correlation metrics between the observation and the 614 

model simulation of the first lead EOF mode for the six fields in the non-initialisation 615 

(left) and the initialisation (right). Each grid square is split by a diagonal in order to 616 

show the correlation with respect to both the eigenvector (upper left triangle) and its 617 

associated principal components (lower right triangle) reference data sets. 618 

619 
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 620 

 621 

Fig. 4. Fraction variance (%) explained by the first EOF mode for six fields in the 622 

non-initialisation (left) and the initialisation (right). 623 

 624 
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 625 

Fig. 5. Model prediction skill in representing the observational Niño3.4 (red), the SOI 626 

(blue) from the DJF to SON in non-initialisation (left) and initialisation (right). Green 627 

diagram shows the correlation coefficient between the model simulated Niño3.4 and 628 

the SOI. Box and whisker diagram shows ensemble mean of each model (asterisk), 629 

median (horizontal line), 25th and 75th percentiles (box), minimum and maximum 630 

(whisker). The two black dotted lines indicate 0.05 significant level based upon 631 

Student’s t-test. 632 
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 636 

 637 

Fig. 6. Lead-lag correlation coefficients between the EASM index and Niño3.4 638 

(upper), and SOI (lower) in non-initialised simulations (left) and initialised ones 639 

(right) for observation (marker line) and models (marker) from JJA(-1) to JJA(+1). 640 

The two black dotted lines are 0.05 significant level based upon Student’s t-test. The 641 

vertical line represents JJA(0), where the simultaneous correlations between the 642 

EASM index and Niño3.4, and SOI are shown. 643 

 644 


