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We thank the reviewers for their careful reading of the manuscript and many helpful comments. Our 

responses to specific comments can be found below. The reviewers’ comments are in italics, our 

responses are in plain font, and changes made to the manuscript are in quotation marks and indented. 

Page and line numbers refer to the original document. We have made significant changes to some of the 

figures and have included new performance metrics for the HDMR model.  However, none of these 

changes affect the conclusions in the manuscript. 

Response to Reviewer RC1: Anonymous Referee #1 

This is a rigorous attempt to illustrate the challenges and utility of deploying ‘low cost’ air quality 

sensors in a community. This is a field of growing interest – likely to become more crowded – with 

important implications across most spheres of atmospheric research. A particularly strength of this work 

is stressed by the authors in warranting caution in interpretation of data from these types of sensors. 

Specific comments: P1, Line 14: perhaps this is better phrased as ‘...address environmental justice issues 

related to air quality.’ P1, Line 22: ‘Protecting the air environment...’ isn’t really one of the most 

important PH challenges. Rather, it is protecting populations from degraded air quality exposure that is 

important. P1, Line 29: to presume the authors mean US dollars? P8, Line 18: extra word ‘in’ 

We have made the suggested changes to wording. 

P1, line 14: “…address environmental justice issues related to air quality.” 

P1, line 22: “Protecting populations from exposure to poor air quality is…” 

P1, line 29: “…thousands of US dollars.” 

P8, line 18: deleted “in” 

General Comments: One issue that is not discussed is the potential for lot variability in sensor 

performance within a single manufacturer. Whilst the authors provide adequate detail on which 

make/model has been chosen (P2, L33-40), do these EC sensors exhibit differences within a manufacturer 

production lot? Or are there differences across different lots? 

This is an important question, and one that lies at the heart of the low-cost sensor calibration challenge.  

Based on our empirical experience, we have observed significant (up to a factor of 2.5x) differences in 

sensitivity for batches of otherwise identical sensors.  In these cases, the sensors themselves have the 

same age (relative to manufacturer production and out-of-package timescales).  This evidence supports 

the need to build sensor-specific (and in the context of multi-pollutant measurement systems, system-

specific) calibrations as opposed to a general network-wide calibration.  Based on our limited 

observations, the manufacturing process for these electrochemical sensors is not yet fully reproducible. 

We have revised the end of Section 2.1 (page 3) to address this issue: 

“This paper presents results for the four electrochemical sensors in a single ARISense system.  

Note that nominally identical electrochemical sensors can have widely different sensitivities and 



exhibit variable environmental interference effects.  As a result, the specific calibration models 

described in this paper cannot be broadly applied to all ARISense systems.  Until the 

reproducibility of electrochemical sensor manufacturing improves, system-specific HDMR 

models will need to be developed for each individual ARISense system to maintain sensor 

quantification metrics.” 

The paper begins with a discussion on environmental justice (abstract), and includes very specific 

references to asthma rates in the sampled community (P4, lines 1-4). Context is, of course, important, but 

these facts seem out of place in this manuscript which is mainly a focus on the technical details of using 

and interpreting EC sensors. 

We have removed some of the details about asthma rates.  The end of the first paragraph on page 4 now 

reads:  

“The original DAQSS deployment and initial ARISense proof-of-concept efforts were motivated 

by the need to assess the viability of lower-cost AQ sensor systems in communities suffering 

from environmental health knowledge gaps, such as the unexplained doubling of the adult asthma 

rate in North Dorchester between 2001 and 2010 (Backus, 2012).” 

It was surprising to see a reported temperature range of 5-45 degrees in a northern US city, but the 

authors later state that this was internal box temperature to assess electrode function under actual 

operating conditions. When comparing these data, was a correction to ambient temp and RH taken into 

account (e.g. temp/RH measured by a nearby met station)? For example, if ambient temp and RH were 25 

deg and 50%, but the internal temp where 35 deg and 15% because of strong sunlight, one would expect 

a significant effect, given the apparent sensitivity. 

Due to the sensitivity of the electrochemical sensors, it is more important to consider measurements of 

temperature and RH at the sampling interface of the sensors rather than ambient conditions, as these 

internal sensor-specific conditions will most closely correspond to the interference signal observed by the 

working and auxiliary electrodes. However, comparison of sensor system temperature and RH inside the 

flow-cell with ambient temperature and RH showed that even under conditions of direct sunlight, the 

sensor system internal conditions remained within 10-15% of the ambient values throughout the co-

location sampling period. We have expanded our explanation of the temperature and RH measurements in 

the 4th paragraph of section 2.1 as follows:  

“The manifold includes an embedded RH/T sensor positioned adjacent to the electrochemical 

cells which is used to model the temperature and relative humidity-derived interference effects on 

the raw sensor response.  Given the active flow of the gas sampling inlet and minimal residence 

time (~1s) of the sample air within the manifold, the RH and T measurements recorded by the 

ARISense system closely track changes in ambient RH and T conditions.  Over the co-location 

period described here, measurements inside the flow manifold were within 10-15% of the 

ambient values even under conditions of direct sunlight.” 

Why was there no data included or discussed for particulate matter or CO2? 

We explained at the end of the third paragraph on page 3 that the particulate matter measurements will be 

assessed in a future manuscript. Due to the size detection limit for the OPC, and the anticipated size 

distribution of near-field and accumulation mode aerosol particles in most urban environments – the 

utility and reliability of low-cost OPCs for PM2.5 measurements remains highly uncertain.  As such, 

significant analysis effort is required to reconcile OPC metrics and this is the subject of ongoing work in 



our laboratory.  Since this paper focuses on calibration of electrochemical sensors, we chose not to 

include the CO2 data.  We have added a sentence at the end of the second paragraph on page 3 explaining 

this: 

“Note that the CO2 measurements are not discussed in this paper which focuses on the 

electrochemical sensors, but will be addressed in a future manuscript.” 

In a number of cases, the authors refer to this sensor package as a ‘low-cost’ replacement for measuring 

air quality, which could play a key role towards empowering environmental justice (P9, Line 34). The 

authors are correct in asserting that lower cost sensors likely have a role in improving granularity in air 

quality monitoring networks, especially in locations with disproportionate air quality burdens, like the 

relatively low income communities in which this study takes place. But the idea of ‘low cost’ is a fairly 

subjective statement that seems meant to broaden the appeal of these products to communities in need. 

The development of low or lower cost sensor units with an eye towards reducing injustices is a noble and 

important direction for air quality scientists, but it might provide value to compare this instrument 

against the few other existing low/lower cost sensing units that are found in the literature – both in terms 

of sensor performance and relative cost. 

The reviewer makes an excellent point that “low-cost” is a subjective term.  We have changed the 

designation for ARISense throughout the paper from “low-cost” to “lower-cost,” and have added the 

following sentences in the introduction to explain the rough cost tiers for air quality monitoring systems. 

It is difficult to provide the exact cost of other Tier 2 systems (integrated multi-pollutant measurement 

packages) since this information is often proprietary. We have also included a table summarizing recent 

published performance data for lower cost AQ systems that utilize Alphasense electrochemical sensors in 

Table 4. 

“Air quality monitoring systems can be roughly divided into three cost tiers, 1) high cost/high 

accuracy systems costing tens to hundreds of thousands of US dollars, such as those used at 

regulatory monitoring stations, 2) lower cost systems costing a few to ten thousand US dollars, 

such as the ARISense system or the recently developed Real-time Affordable Multi-Pollutant 

(RAMP) package developed by Carnegie Mellon University and Sensevere (Zimmerman et al., 

2017), and 3) low cost systems (costing tens to hundreds of US dollars) designed for the 

consumer market that typically only measure a single pollutant and generally suffer from poor 

quality data (EPA, 2017).  The goal of second tier systems is to provide data quality approaching 

Tier 1 at a fraction of the cost.” 

The largest issue seems to be in interpretation and setup of the HDMR model to adjust sensor data to real 

values. Specifically, the authors state that the model can ‘capture the intricate interdependencies of the 

variables. . .’ in order to correct the data and provide guidance to researchers which variables are most 

impactful (P6, Line 1). These statements presume that the researchers enter in all possible variables that 

are likely to play a role in sensor performance. Given the relative few number of variables measured, and 

presumably computed, how can a researcher have confidence that they are accounting for all – or at least 

most – of the likely variants that may affect their results? The concern here is that there may be other 

plausible covariates that affect sensor performance. For example, one might imagine a measure of CO2 

by NDIR could be affected by water vapor (which is imputed by this sensor package), but also by other 

ambient IR-absorbing components (that are not measured)? 

To re-phrase the reviewer’s question – they are asking about the challenge of unknown unknowns – if 

there is a specific interference vector that is not explicitly measured (and modeled) with the system, how 

can we be confident that the results from the integrated system will remain robust in the real-world 



presence of this interference vector?  To first order, we are confident that the model can handle the full 

extent of environmental interference vectors encountered in the Dorchester micro-environment based on 

the results of the test data which leverages the long-term co-location of the sensor with reference 

measurements.  By combining on-board measurements of multiple pollutant species (via raw sensor 

outputs – both WE and Aux electrode signals) and environmental conditions (P, T, RH) and allowing the 

ambient variability of these species and conditions to train the model, the results suggest that the primary 

factors impacting sensor performance are captured by the model for this set of electrochemical sensors 

(although clearly, the Ox-B421 sensor is underperforming relative to the others).  It is certainly possible 

that the NDIR measurement of CO2 could be impacted by cross-sensitivity to species not measured by the 

other sensors in the system, but modeling and validating the NDIR sensor response is beyond the scope of 

the current manuscript and will be examined in a subsequent work.  

The authors also note (P 6, Line 8-9) that in the first step of modeling, a user can choose how many 

variables are selected to interact with one another. How does one quantitatively make this determination? 

This comment overlaps with comments from Reviewers 2 and 3, requesting more information on how the 

model was optimized.  We have added the following paragraph on page 7 and to describe the 

development of the HDMR model for the NO sensor: 

“An example of how the HDMR model is developed for the NO-B4 sensor is provided in the 

Supplemental Material. The left column of Table S2 lists all available input parameters and the 

other columns denote which parameters were included in the input matrix for each model run.  

The bottom rows list the RMSE, MAE, and MBE for each model run for both the training data 

(model generation) and test data (model evaluation).”   

We have added the following text, table and figure to the Supplemental Material: 

“Table S2 shows a subset of the input matrices for training the NO-B4 sensor output to the NO 

reference measurements.  Six model versions are shown (labelled v.8-13), and the resultant 

RMSE, MAE, and MBE (in ppb) are listed at the bottom of the table for both the training set and 

the test data (with test metrics shown in curly brackets).  The optimal model run (v.8) is indicated 

with shading.  The table shows that while the model with the most diverse set of inputs (v.12) 

resulted in the lowest RMSE, MAE, and MBE values for the training data, its RMSE and MAE 

were worse compared to v.8 when applied to the ambient test data.  It should be noted that 

ExploreHD also performs statistical F-tests to further refine which inputs and input pairs are 

considered in the HDMR model training, and to determine a suitable degree for polynomial basis 

functions for each component function. 

The poorer performance of model v.12, trained with the full set of inputs available can be 

explained by increased overfitting related to the additional degrees of freedom from the increased 

number of input pairs.  The F-tests performed by ExploreHD during model generation are aimed 

at mitigating issues with overfitting, but only consider each input independently.  Thus, this 

automated input selection is not perfect, especially for cases like electrochemical sensor 

quantification, where there is significant correlation between certain inputs in the training data.  

The approach used here of testing a range of input sets, effectively serves as a manual supplement 

to the automated input selection performed by ExploreHD. 

From Table S2 it is also seen that models excluding key inputs (e.g. v.10) exhibit poorer 

performance on test (and training) data.  The input selection used in model v.8 exhibits a 

reasonable trade-off between the issues of exclusion of important inputs and overfitting (as the 



performance on training and test datasets were comparable in this case).  Through future work, it 

may be possible to refine or replace the F-test-based input selection algorithm used by 

ExploreHD so that overfitting might be addressed in a more automated fashion for training 

datasets exhibiting high correlation between certain inputs.  

Figure S1 shows key input pairs in the NO HDMR v.8 model.  The figure plots normalized total 

sensitivity indices for the input pairs.  These sensitivity indices quantify the proportion of 

variance that can be explained by each input pair, considering both structural and correlative 

components.  These metrics are the result of a structural and correlative sensitivity analysis 

(SCSA) performed by ExploreHD, which is described in [Li et al. “Global Sensitivity Analysis 

for Systems with Independent and/or Correlated Inputs”, J. Phys. Chem. A. 114. 2010, 6022].  In 

addition to calculating a total sensitivity index for each input / input pair, this analysis 

decomposes the total sensitivity into structural contributions reflecting the underlying system 

model, and correlative contributions reflecting covariation between inputs in the dataset being 

considered. Decomposition of sensitivities in this manner provides the opportunity for additional 

insights into the role of each input / input-pair.” 

Table S2. Set of HDMR models for NO sensor. The optimal model (v.8) is indicated with shading. 

Model v. 8 9 10 11 12 13 

CO AUX x    x x 

CO WE x   x x x 

NO AUX x x   x x 

NO WE x x x x x x 

NO2 AUX     x x 

NO2 WE     x x 

Ox AUX     x  

Ox WE     x  

Dew point x x x x x x 

Temperature x x x x x x 

CO2 (voltage)     x x 

RMSE (ppb) 

{ test } 

3.38 

{ 4.52 } 

5.09 

{ 5.86 } 

6.75 

{ 7.16 } 

4.88 

{ 5.53 } 

2.58 

{ 9.19 } 

2.81 

{ 6.41 } 

MAE (ppb) 

{ test } 

2.40 

{ 2.83 } 

3.29 

{ 3.90 } 

4.23 

{ 4.94 } 

3.05 

{ 3.27 } 

1.63 

{ 4.07 } 

1.76 

{ 3.27 } 

MBE (ppb) 

{ test } 

0.02 

{ 0.97 } 

0.32 

{ 1.80 } 

-0.55 

{ 2.08 } 

0.15 

{ 1.08 } 

-0.01 

{ 0.30 } 

-0.05 

{ 0.87 } 

 



 

 

 

“Figure S1.  Normalized total sensitivity indices of each significant (contribution > 0.1%) input 

pair in NO Model v.8.  Of the possible combinations, the NO-WE/Temp, NO-WE/NO-AUX, and 

NO-AUX/CO-WE explain more than 80% of the sensor-system variance trained against the 

corresponding reference [NO] measurement.” 

 



It is very difficult to discern useful results from Figure 3. Further, we must presume that these data have 

been validated by the investigators. If so, it is surprising to see spikes of ozone exceeding 1000ppb with 

some regularity in this location, as observed by the reference monitor. 

We agree with the reviewer that Figure 3 is not very useful.  We have therefore removed it and included a 

72-hour segment of the differential voltages in what was formerly Figure 5 (now Figure 3).  The reference 

data for O3 plotted in the original Figure 3d was incorrect (displaying reference CO data instead of O3 

data in the AMTD version of the paper).  We apologize for this error. 

Figure 5 is a fairly useful illustrative figure that clearly identifies sensor limitations. But it is troubling to 

see divergence between the EC sensor and the reference sensor in periods of relative stability in 

temperature. This seems to need further explanation – how does your data compare for this specific time 

series after it has been modeled? 

Temperature is not the only variable driving the divergence between the EC and reference sensors, hence 

the need for a complex, multi-dimensional model to explain the variance in the raw sensor relative to 

reference. We have revised Figure 5 (now Figure 3) to include the model output and we have revised the 

text on page 7 (now page 8) as follows: 

“Figure 3 shows the time-series for a ~ 72-hour period for the relative humidity, dew point 

temperature (panel a, solid and dashed lines, respectively), temperature (grey shaded area), and 

raw differential sensor output (dashed line), reference measurement (thick red dashed line) and 

model output (thin solid line) for the four electrochemical sensors (panels b-e). The raw 

differential sensor output is displayed as a voltage (ΔmV) which is linearly proportional to the 

difference in current generated within the electrochemical cell at each electrode (working and 

auxiliary).  The correlation plots between the raw EC-sensor output and the reference 

measurements are shown in Figs. 4a to d, with each data point colored by flow-cell temperature.  

The intercept, slope and r2 for the linear regression indicated with a red line in Fig. 4 are listed in 

Table 1.” 

with additional discussion on page 10: 

“Closer examination of the model output for 72-hours of the test data in Fig. 3 gives additional 

clues for improving the model.  In Fig. 3d at ~18:00 on 11/2/2016, the model NO2 exceeds the 

reference NO2 by a factor of ~2 during a period of rapidly decreasing temperature and increasing 

RH.  This underscores that the rate of change of input parameters may be important in the model, 

in addition to the absolute values.  Fig. 3e also suggests that the HDMR model for Ox struggles 

during times of rapidly changing temperature, particularly when the O3 concentration is low (< 3 

ppb). Future development of HDMR models to support ARISense quantification will include 

derivatives of key variables as inputs.” 

The authors included a number of variables to consider in adjusting or training the model, but 

specifically excluded sensor age, noting that the sensors were approximately 6-7 months old at the end of 

the study and, therefore, should have limited effect on model performance. Firstly, wouldn’t it be more 

appropriate to compare sensor age to manufacturing date, rather than when a package is opened?  

Based on communications with the manufacturer of the sensors, sensor aging is directly related to the loss 

of electrolyte (7M H2SO4) from a given EC cell, which is primarily driven by exposure to extremes in RH 

(< 15% or > 80%).  Under these conditions the electrolyte will either evaporate (<15%) from the cell or 

absorb significant H2O (> 80%), overflowing the cell.  Upon completion of a batch of sensors, the 



manufacturer ships the cells in self-contained sealed containers at 25C and 60% RH, following 

equilibration in their laboratory.  Therefore, we interpret the onset of sensor-aging (sensor t0) as the date 

at which this seal is broken for a given individual sensor.   

And second, it is unsatisfying to ignore sensor age as a relevant variable, given the relatively short 

lifetimes of these sensors. For example, the NDIR lamp and electrode has a lifetime of 2000-6000 hours 

(according to the manufacturer), depending on lamp light time and the presence of heavy contaminating 

pollution. This is 80- 250 days, which is not much longer than the study length presented here, and 

suggests that long term drive is something that should not be ignored. 

While we agree that modeling the decay (i.e., aging) of electrochemical sensors is extremely important, 

such an exploration is beyond the scope of the analysis presented here. The manufacturer quotes the 

following operating lifetimes (degradation of signal to 50%): 36 months for CO, and 24 months for NO, 

NO2 and Ox. These timescales are longer than the 4.5 month deployment (6.5 mo. out of package) 

pertaining to the current work, and we therefore do not expect significant (>5%) sensor degradation due 

to aging.  A detailed assessment of sensor performance over 18-24 months of continuous ambient 

operation is ongoing and it is with this subsequent dataset that time will be considered as an input to the 

model in an effort to track and correct for degradation in performance over sensor lifetime.  The NDIR 

sensor is not discussed in this manuscript. We have revised the last paragraph of section 2 (page 8) to 

read: 

“The data presented in this paper were recorded over a 4.5-month sampling interval (July 7, 

2016- November 23, 2016).  All four electrochemical sensors used in this study were first 

removed from their packaging on May 9, 2016.  That means that from out-of-package, the sensors 

had aged ~6.5 months by November 23.  The manufacturer quoted lifetime for degradation of the 

signal to 50% is 36 months for the CO sensor and 24 months for the NO, NO2 and Ox sensors.  

Given that these lifetimes are significantly longer than the deployment time scale analysed here, 

we did not include a time-dependent sensitivity term in the input matrix of our HDMR model 

runs.  The results presented here therefore assume that the sensitivity of each of the 

electrochemical sensors did not appreciably drift over the 4.5 month deployment.  In subsequent 

studies we will analyze sensor response over longer deployment timescales (18 to 24 mo.) to 

investigate the importance of including a time-based parameter to track and correct for drift in 

sensor response with time.” 

 

Response to Reviewer RC2: Anonymous Referee #2 

General comments: This paper is timely in describing how to improve the performance of a set of 

Alphasense electrochemical sensors, which are being widely incorporated into may emerging 

multipollutant air quality sensor technologies. The paper goes into great depth in exploring causes of 

sensor measurement artifacts and demonstrates an approach to improve the data quality. However, this 

paper will have a limited impact if several important issues are not addressed. A recommendation of 

major changes is suggested, focusing upon these areas of improvement:  

1.  How are authors defining “good enough” for sensor data quality? They indicate a goal of having 

credible data and “acceptable accuracy” (line 27), but need to clarify what they consider to be their 

target (accuracy, measurement range, etc.) and for what purpose.  



We thank the reviewer for this important question and have revised the paper to include the performance 

metrics of root mean square error (RMSE), mean absolute error (MAE) and mean bias error (MBE). We 

have added the following paragraph on page 7 and the following table to the Supplemental Material. 

“The metrics used to evaluate the model are the slope and intercept of a linear least squares 

regression of the model output with the reference measurements, the coefficient of determination 

of the linear fit (r2), the root mean square error (RMSE), the mean absolute error (MAE), and the 

mean bias error (MBE). The equations for these metrics are given in Table S1 and model-to-

measurement results are summarized in Tables 2, 3, and 4.” 

 

Table S1. Metrics used for comparing EC sensor model output (yi) to reference measurements (xi). 

Statistic Abbrev. Formula Description 

Coefficient of 

determination 
�� �� = 1 − ∑ ��	 − 
	���	
�∑ ��	 − �����	
�  


	  is the value of the linear least squares fit at �	. Ratio of explained variation to total 

variation. For linear least squares regression, r 

is equal to Pearson’s correlation coefficient. 

Root mean 

square error 
RMSE ���� = �1� ���	 − �	���

	
�  

Standard deviation of difference between 

model output and reference values. Measure of 

accuracy. Sensitive to outliers. 

Mean absolute 

error 
MAE ��� =  1� �|�	 − �	|�

	
�  
Average of the absolute error. Disregards the 

direction of under- or over-prediction. 

Mean bias error MBE ��� = 1� ���	 − �	
�

	
� � 

Average error. Indicates if model output values 

are biased high or low relative to reference 

values. 

 

2. The authors note in their concluding sentence that “This compression of the training period is 

especially important. . .” Currently, they used 35% of a 4 month period of data to develop a complex 

model to improve the data. Why 35%? What is the performance if only 10% of the data were used? What 

if only the first week of data were used? Authors have sufficient data to explore the implications of 

different training periods that would provide important insight to researchers looking to employ sensors 

and develop study plans yielding reasonable data quality. It is recommended that authors go into 

substantially more depth to investigate the training period required.  

The goal of this work is to show that with a sufficiently wide range of input parameters, we can 

successfully use the HDMR model to analyze electrochemical sensor raw output data. We did not 

systematically attempt to minimize the training period.  Instead, we focused this initial modeling effort on 

evaluating whether the HDMR model could yield robust results when trained with a fairly conservative 

(intentionally comprehensive) set of input data (incl. range of gas concentrations, magnitude of 

environmental conditions and rates of change of environmental conditions).  However, in our re-analysis 

of the test and training data points prompted by this question, we realized that we had unnecessarily 

eliminated test data by requiring that all four reference measurements be sampling ambient 

simultaneously (with none of the reference instruments in auto-calibration mode).  Because the reference 

instruments all have different calibration schedules, this inadvertently decreased the set of test data.  By 

treating each individual reference measurement separately, we were able to recover ~ 10% of the total test 

data and use that to evaluate the HDMR models.  As a result, the training data now constitutes ~ 24-27% 



of the total eligible co-location data points, leaving ~73-76% of the data available to test the HDMR 

model against ambient pollutant/condition variability. 

We have also added a figure to the supplemental material to show the distribution of parameters used 

during the training and test periods. And we have added the following text on page 9 to clarify our goals: 

“The training data for the HDMR model were chosen to provide comprehensive coverage of 

environmental variability spanning the July-November sampling interval.  It was important to 

include (1) sensor responses to the range of gas concentrations encountered in ambient air (near-

zero to high concentration transient spikes in pollution), (2) the range of temperatures and various 

rates-of-change in temperature, and (3) the range of measured water content of the sample air in 

the flow-cell.  The goal was to include a wide enough range of training data to avoid 

extrapolation errors when applying the model to the test dataset (all ambient co-location data not 

included in the training dataset).  Figure S3 shows the distributions of temperature, reference 

measurement, dew point temperature and relative humidity for the training data for the CO-B4 

HDMR model, overlaid with corresponding distributions of the test data.  We did not attempt to 

minimize the amount of ambient data used for training, or vary the timing of the training data 

with respect to the test data.  Approximately 25% of the full time series was used to generate the 

model (Table 2 and indicated with grey bars in Fig. 5).  The exact fraction of data used for 

training was slightly different for each sensor due to differing calibration schedules for the 

reference measurements (which automatically excludes sensor data from the training or test 

datasets).  For each sensor, the set of inputs included in the input data matrix was optimized as 

described in Section 2.5 and the Supplemental Materials.” 



 

Figure S3. Distributions of temperature, reference measurement, dew point temperature, and relative humidity for the 

training data for the CO HDMR model (dashed lines/shaded) and the test (solid lines) data.  In the case of CO, the 

training data distributions were generated from 27% of the total available co-located interval with 7974 5-min average 

data points comprising the model training matrix and 21533 5-min average data points comprising the test data.   

 

3. Authors should investigate an aging effect – they indicate they will only explore this later, but should at 

minimum demonstrate whether there is any relationship with the number of “out of box” or “in use” 

days. In Jiao et al (2016, https://doi.org/10.5194/amt-9-5281- 2016), aging was clearly demonstrated in a 

number of sensor types that incorporate Alphasense sensors.  

As noted in the response to Reviewer 1, the deployment time (4.5 months) was much shorter than the 

manufacturer quoted lifetimes (24 to 36 months) of the sensors. A detailed assessment of sensor 

performance over 18-24 months of continuous ambient operation is ongoing and it is with this subsequent 

dataset that sensor age will be considered as an input to the HDMR model formulation in an effort to 

track and correct for degradation in performance over sensor lifetime. 

4. How variable is the performance between identical sensors? How variable are the HDMR models from 

one RAMP to another?  

This work focused on results obtained from a single ARISense system, which is different from the Real-

time Affordable Multi-Pollutant (RAMP) sensor package developed by Sensevere and Carnegie Mellon 



University for which multiple units were evaluated in Zimmerman et al., 2017.  As mentioned in response 

to Reviewer 1, there is significant variability at the manufacturing level of Alphasense electrochemical 

sensors, which results in the need to build sensor-specific calibration models across the same type (e.g., 

CO-B4) of sensor.  Moving forward we anticipate that unique HDMR models will be necessary for each 

ARISense system, due to the irreproducibility of the manufacturing process as it relates to each 

electrochemical sensor.  The aim of the current work is to provide the first demonstration of the HDMR 

model trained on an ambient co-location dataset. Future laboratory-based efforts will focus on building 

HDMR models for multiple nodes from a compressed (~1 week) training interval during which pollutant 

concentrations and environmental conditions are systematically varied to sample the full range of 

conditions relevant to the field. 

We have revised the end of Section 2.1 (page 3) to clarify this issue: 

“This paper presents results for the four electrochemical sensors in a single ARISense system.  

Note that nominally identical electrochemical sensors can have widely different sensitivities and 

exhibit variable environmental interference effects.  As a result, the specific calibration models 

described in this paper cannot be broadly applied to all ARISense systems.  Until the 

reproducibility of electrochemical sensor manufacturing improves, system-specific HDMR 

models will need to be developed for each individual ARISense system to maintain sensor 

quantification metrics.” 

5. The HDMR analysis is fairly opaque – authors cite papers that describe the approach, but do not 

provide sufficient detail for this to be reproducible. It is recommended that authors provide more specific 

information on the HDMR analysis and resulting model in the supplemental information. Given some 

sensor applications involve real-time transmission and display of data to the public, does the HDMR 

approach support this or must it be performed post hoc?  

As discussed above in the response to Reviewer 1, we have added a description of how the HDMR model 

is developed in the main text with supporting tables in the Supplemental Material. Real-time 

implementation of the HDMR model is feasible by adding the sensor-specific and system-specific models 

(in closed form, algebraic expressions) to the backend database architecture to enable real-time reporting 

of calculated ppb values. 

Minor comments:  

-  Quality of the text on figures needs improvement – recommend not using red font text and ensuring 

clear, readable axes.  

The red font text within figures has been modified and the font for axis labels has been increased in size 

and bolded. 

Authors compare against DEP monitors – they should indicate what are the detection limits of the 

monitors and implications for their calibration. Since regulatory monitoring stations are employed to 

evaluate air quality relative to the NAAQS, detection limits can be an issue in low concentration areas 

(e.g., some CO monitors have ∼300 ppb detection limits, which may be fine for the NAAQS at a ppm level 

but may be an issue for co-location and calibration of sensors to be used for low-ambient sampling).  

We have modified section 2.3 to include the limit of detection (LOD) and RMS noise for each of the 

reference monitors used in the current study.   



“The reference measurements used in this study include ozone (O3, Teledyne Model T400 

Photometric Ozone Analyzer, LOD <0.6 ppb; RMS < 0.3 ppb), carbon monoxide (CO, Teledyne 

Model 300EU Carbon Monoxide Analyzer, LOD < 20 ppb; RMS ≤ 10 ppb), and nitrogen oxides 

(NO, NOx, NO2, Teledyne Model T200 Nitrogen Oxide Analyzer, LOD = 0.4 ppb; RMS < 0.2 

ppb).” 

Abstract has some awkward statements that could be improved, as well as providing more quantitative 

results. e.g., “live, work, breathe. . .” – breathing is something that happens at all locations. . .one would 

hope. Also what is meant by “stakeholders”? The public? Industry?  

We have deleted the word “breathe” in the first sentence of the abstract. We have replaced “stakeholders” 

with “public.” 

Did the authors ever characterize the response time of the sensors? (e.g., against high time-resolution 

instruments also made by Aerodyne). A brief statement on their utility for a mobile sampling approach 

and time base of the data would be helpful, as many low cost sensor systems are being employed in a 

mobile fashion.  

ARISense v1.0 was designed to serve as a stationary, fixed site AQ node.  Given that the fastest response 

times we could access from the DEP monitoring station equipment in this work was 60s averages, the 

time-response of the sensors themselves did not lag the rates of change in pollutant concentrations that 

were characterized by the reference instrumentation at the site.  Laboratory studies are underway that will 

examine the response time of the electrochemical sensors more carefully and evaluate the limits of 

reconciling pollutant gradients from mobile measurement platforms (bicycle and drone), recording sensor 

metrics at 1Hz.  This work will be the subject of a forthcoming publication.  

Response to Reviewer SC1: N. Zimmerman, R. Subramanian, A. Presto and A. Robinson 

This paper discusses using HDMR to calibrate the low-cost sensors used in the Aerodyne ARISense air 

quality monitor. While the results seem promising, it is difficult to assess the performance of the model, 

because the training data appear to have been included as part of the model performance assessment. 

This would bias the model performance and makes it difficult to compare the results with other studies 

that evaluate model performance using independent datasets.  

We thank the reviewers for bringing this issue to our attention. This was a serious oversight on our part 

and we have now corrected it. We have now re-evaluated the model performance using the test data only 

(i.e., excluding the training data).  The results are presented in Figures 3, 4 and 5 and the performance 

metrics are in Table 3. Excluding the training data from the test data decreased the r2 for each sensor by 

approximately 10%, but did not change the conclusions of the paper. 

Additionally, we believe the paper would benefit from more discussion on building and interpreting the 

HDMR model. Questions such as what was the maximum order used, what variables were significant, 

and any physical interpretation of any significant variables are either missing or underdeveloped. 

As discussed in the response to Reviewer 1, we have expanded our discussion of building and interpreting 

the HDMR model in the main text and in the Supplemental Material. 

The paper would also benefit from some additional metrics of model performance beyond correlation 

plots.  



We agree with the reviewers that additional performance metrics besides the slope of the correlation plot 

and r2 are important to include. As noted in the response to Reviewer 1, we have included RMSE, MAE 

and MBE as additional performance metrics. 

Another question to address is how the training data are chosen. From Figure 6, it appears that only 

periods where there were pollutant concentrations were elevated were chosen to build the model. How 

could this calibration approach be generalized for others? If the training data set was carefully 

constructed vs. randomly selected then is it feasible to assume that the model training window could be 

condensed to 1 week, as the other reviewers suggest? 

As noted above in the response to Reviewer 2, we chose training data that covered the full range of the 

parameters that would be encountered in the test data. We have added additional discussion in the main 

text and Figure S3 with the distributions of parameters measured during the training and test data periods. 

As a full disclosure, we are also in the process of submitting a manuscript on a different type of 

calibration model for low-cost electrochemical sensors. We welcome and encourage feedback from 

Aerodyne on our manuscript in kind to help the community collectively improve sensor performance.  

We look forward to commenting on your manuscript. 

Specific Comments  

Page 5: Line 26-27: Can you be more specific? What is your definition of “acceptable accuracy” –the 

paper would benefit greatly from some quantitative performance metrics.  

Quantitative performance metrics are now included for the training and test datasets, listed in Tables 2 

and 3 of the main text. 

Page 6, Line 11-12: What is the statistical analysis done to decide which variables are significant? 

Something like AIC/BIC? ANOVA? T-test?  

HDMR uses F-test as an initial evaluation of the relative importance of individual input parameters to a 

given trained output vector.  As noted above in the response to Reviewer 1, a more thorough description 

of our approach to HDMR is now included in the Supplemental Materials.  

Page 6, Line 13-14: I am not sure I fully understand the HDMR. Can the orthogonal basis functions be 

written in closed form (parametric?) I think a couple extra sentences here introducing the model are 

warranted.  

Yes, the 2nd order polynomial fits (cubic as max) can be exported from the HDMR log files into a closed 

form, algebraic equation which in turn can be embedded in the backend database architecture of the 

ARISense server to provide real-time concentration metrics through the online user-interface.  These 

equations are also embedded in the firmware for each ARISense system so that concentration values can 

be logged to the local on-board USB drive if the system is run in off-line mode.     

Page 6: Line 20-23: What is the spanned range? For others building their own co-location windows, 

what were the critical criteria to determine the optimal co-location period? Was 35% arbitrarily chosen 

or was the calibration window tuned and if so, what was learned during tuning? Some discussion of 

diminishing returns vs. training window would be helpful to others implementing these methods.  



As noted above in the response to Reviewer 2, we did not attempt to minimize or tune the training 

window. Our goal was to choose a set of training data that covered the full range of the input parameters 

that would be encountered during the test data. 

Page 6 Line 12-18: This is another paragraph where I think some quantitative performance criteria 

would be useful. When comparing the performance of HDMR calibrations to manufacturer corrections or 

corrections by other papers, it’s not clear what the terms ‘reasonably good correlation’ or ‘relatively 

small’ mean. 

We have added a table to the main text (Table 4) summarizing results from three recent studies examining 

Alphasense electrochemical sensor-derived concentrations, tested against co-located reference 

measurements in ambient urban and suburban micro-environments.   

Page 7 Line 26-27: It seems like a lot of interesting work was done in the lab, but none of these results 

are provided. I’d be interested to see more details here. Can this be included in supplemental?  

While we agree with the reviewer that, in many ways, the laboratory setting provides a controlled 

environment across which the sensor response to a matrix of conditions can be characterized, our 

laboratory work with the ARISense system is ongoing and will be the subject of a forthcoming 

manuscript.  The aim of that work will be to demonstrate that compressed (~1 week) training datasets can 

be generated through systematic laboratory experiments and that the resultant HDMR models provide a 

robust approach to ambient pollutant measurements made with the ARISense system across a variety of 

relevant micro-environments.   

Page 8, Line 14: What was the environmental variability spanned? And how was the 35% subset chosen? 

This is a follow up to the previous comment.  

These questions are answered above. 

Page 8, Line 20: This seems problematic, was the performance of the model tested on a data set in which 

35% was used for training? Ideally the model should be tested on completely blind test data (i.e., the 

remaining 65%). If this is what you did, it should be made clearer. If this is not what you did, you should 

provide performance metrics for the pure testing data since this approach is the only way to truly test the 

model performance. 

We agree with the reviewers that including the training data in the testing data was problematic and regret 

the error.  


