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Abstract. Drinking water distribution networks are part of critical infrastructures and are exposed to a number of different 

risks. One of them is the risk of unintended or deliberate contamination of the drinking water within the pipe network. Over 

the past decade research has focused on the development of new sensors that are able to detect malicious substances in the 

network and early warning systems for contamination. In addition to the optimal placement of sensors the automatic 

identification of the source of a contamination is an important component of an early warning and event management system 10 

for security enhancement of water supply networks. Many publications deal with the algorithmic development, however, 

only few information exists about the integration within a comprehensive real-time Event Detection and Management 

System. In the following the analytical solution and the software implementation of a real-time source identification module 

and its integration within a web-based Event Management System is described. The development was part of the project 

SAFEWATER, which was funded under FP 7 of the European Commission.  15 

Introduction  

Drinking Water distribution networks (WDNs) are an integral part of the technical infrastructure. Their task is to deliver a 

sufficient amount of drinking water of perfect quality at any place and any time. Since WDNs are exposed to a number of 

different risks, they belong to the critical infrastructures. One important risk is the (deliberate) contamination of drinking 

water with harmful substances. An adequate risk management system is required to manage the different threats in case of an 20 

event. Such a system normally consists of components for prevention, detection and response. Prevention measures include 

for example the protection of facilities such as water treatment plants, storage tanks and pumping stations or network 

sectorisation for isolation of contaminant (Di Nardo, et al., 2014). Among others, online monitoring of water quality within 

the distribution system is an essential part of a contamination warning or early detection system (Hall, et al., 2007). As 

important, in case of a contamination event, is a well prepared and efficient response plan. For more than one decade a 25 

number of researchers have been working on methods for civil protection, real-time detection of contaminations and specific 

sensor development.  Different software tools have been developed tackling problems such as optimal placement of sensors 

in the system (e.g. TEVA-SPOT (Sandia National Laboratories, 2017), (Chang, Pongsanone, & Ernest, 2011)) and detection 

algorithms (e.g. CANARY (Sandia National Laboratories, 2017)). Even though sensor based online detection systems are 
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capable of raising an alarm almost in real-time if the quality of the water that reached the sensor was deteriorated, the 

location of the source of this deterioration, in general, remains unclear. Since the efficiency of response actions is strongly 

dependent on the knowledge of the location of the source and the time when the contamination started, a tool is required that 

calculates the possible location of the contamination source based on the sensor information (SI: source identification). Then, 

in combination with the knowledge of the flow velocities in the pipes, the current spread of contamination and therewith the 5 

affected population can be estimated. 

For solution of the source identification problem there are several categories of formulations and solving methods. 

Traditionally, SI was treated as an inverse parameter estimation problem. The parameters are the node time pairs of possible 

contaminations. (Laird, Biegler, Bartlett, & van Bloemen Waanders, 2005) formulated the SI problem as a nonlinear, infinite 

dimensional optimization problem, subject to algebraic, ordinary differential, and partial differential constraints. Input 10 

parameters are the flow profiles calculated by hydraulic simulation and measured concentrations at sensor locations. As 

output, the time-dependent concentration along pipes and at junctions and the mass input at junctions as function of time are 

sought. The method was tested for a network with 469 nodes. Even for this small model the number of unknowns in the NLP 

already reached 210,000. As a consequence, the method cannot be applied to real-time calculation of the large-size network 

models. Other authors use stochastic optimization methods for solution of the parameter estimation problem. (Preis & 15 

Ostfeld, 2008)  combine the hydraulic and water quality simulation software EPANET with a Genetic Algorithm (GA). The 

objective function consists of a least squares function of measured and calculated concentrations. For the measurements, also 

imperfect sensors are taken into account. The calculation time for a test network with less than 1,000 nodes was about one 

hour. (Liu, Ranjithan, & Mahinthakumar, 2011) use an Evolutionary Algorithm (EA) for adaptive (based on updated 

observations) and continually search for optimal solutions of a modified least squares function. Other authors (e.g., (Propato, 20 

Tryby, & Piller, 2007)) propose to apply an Input-Output Model to contaminant source identification. The model consists of 

a linear relationship between the possible source concentrations and the concentration measured at the sensors. The equation 

uses a linear transport matrix that is, in general, underdetermined leading to non-unique solutions. Since for real-time 

application the execution time of the method is the critical performance indicator, optimization based methods are not suited. 

Therefore, (De Sanctis, Shang, & Uber, 2010) use a modified Particle Backtracking Method (PBA) for identification of all 25 

possible contaminant source locations. For alarm generation, binary sensor information is introduced. The authors claim that 

formulating the SI problem as an inverse water quality problem is difficult for three reasons: 1) ill-posedness (sparse sensor 

grid in contrast to huge number of possible sources, e.g. hydrants, house connections, 2.) problem size (number of possible 

sources times number of time steps within detection time), 3.) assuming existence of perfect quality sensors that are capable 

of measuring the concentration of all relevant substances that do not exist in reality. In addition to the available number of 30 

sensors and their reliability also the design of the sensor network is essential for effectiveness and accuracy of the source. 

Recently, a method was published that takes into account the feedback between sensor network design and the efficiency of 

source identification algorithm (Ung, Piller, Gilbert, & Mortazavi, 2017).  
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In the following a software tool is presented that is suitable for real-time application and integration within risk or event 

management systems. It was developed as part of the EU funded project SAFEWATER (Contract Number: 312764). The 

algorithmic development is based on a simplified transport algorithm that runs forward and backward in time. Whereas 

backtracking is used for source identification, forward simulation delivers the estimated current spread of contamination 

based on the source locations. As a possible response action, the tool also proposes valves to be closed for isolation of 5 

contaminant. The software is part of a comprehensive Event Management Software (EMS) that collects all information from 

the field and from different software components that are connected with the EMS including a newly developed Event 

Detection System (EDS) as well as offline and online hydraulic and water quality simulators. The paper starts with an 

overview of the theoretical background including simplified transport model and source identification algorithm. Then, the 

integration within the EMS framework is outlined. Finally, the application of the tool is presented for the SAFEWATER test 10 

lab water network at Water Supply Zurich.   

2 Theoretical Background 

2.1 Transport Model 

The theory of modelling reaction and transport of substances within a water distribution system is described in a number of 

books and articles. A good overview of the methods that are included in most of the commercially available simulation 15 

software tools can be found in (Rossman & Boulos, 1996). In the following a very brief presentation of the problem of 

contaminant injection with sharp quality front (discontinuity) is given. Reaction and diffusion are not considered here. In this 

case the transport is described by the so-called Riemann problem (page 49 in (Toro, 2009)): 

          (PDE)  𝑐𝑡 + 𝑣𝑐𝑥 = 0       − ∞ < x < ∞, t > 0     (1a) 

           (IC)    c(𝑥, 0) = 𝑐0(𝑥) =  {
𝑐𝐿 𝑖𝑓 𝑥 < 0
𝑐𝑅  𝑖𝑓 𝑥 > 0

        (1b) 20 

The Partial Differential Equation (1a, PDE) includes the partial derivatives of the concentration 𝑐 after time (𝑐𝑡) and location 

within the pipe (𝑐𝑥), 𝑣 denotes the flow velocity. The Initial Value Problem (IVP) of Eq. (1) distinguishes from conventional 

transport equations only in the Initial Condition (Eq. (1b), IC). Here, there are two constant water qualities 𝑐𝐿 and 𝑐𝑅 that are 

upstream and downstream of point 𝑥 = 0. For 𝑥 = 0 the initial condition has a discontinuity. For solution the Method of 

Characteristics (MOC) can be used. When time passes, the discontinuity is propagated along the characteristic lines with 25 

flow velocity 𝑣. Accordingly, the solution of this simplest case of Riemann problems  (Eq. (1)) is:    

            c(𝑥, 𝑡) = 𝑐0(𝑥 − 𝑣𝑡) =  {
𝑐𝐿  𝑖𝑓 𝑥 − 𝑣𝑡 < 0
𝑐𝑅  𝑖𝑓 𝑥 − 𝑣𝑡 > 0

        (2) 

For the Riemann equation, the characteristic that passes through 𝑥 = 0 is of special interest. It separates the (concentration) 

surface above the x-t-plane into one part where the concentration is 𝑐𝐿 and one part where the concentration is 𝑐𝑅 . This 

particular characteristic line is the only one across which the concentration changes. For implementation, the IVP (1) is 30 
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solved for all pipes using a MOC. For later processing of the results, the traces of a particle that travels along the special 

characteristic line that starts from 𝑥 = 0 is stored. In the easiest case the flow velocity is constant and only the slope has to 

be stored. However, in extended period simulations the flow velocity and even the flow direction may change from external 

time step to time step. Therefore, it proved to be convenient to store the [time, position, value]-triples of all particles for 

every external time step. The term external time step refers to the time interval between updates of the boundary conditions 5 

of the underlying hydraulic simulation model. Since the flow velocities change only after such an external time step, the full 

information [value, time, position] can be re-established from this information for any time and location.  

In order to move from the pipe level - with the initial assumption of infinite pipe length from above - to the network level, 

additional boundary conditions have to be considered for finite pipe length. The IVP then is transferred to an IBVP (Initial 

Boundary Value Problem). In general, the combination of pipes at a junction requires the formulation of additional mixing 10 

conditions at network nodes. Since no critical concentration can be given for unknown substances, here, the binary 

information (contaminated yes/no) of the front is transferred unchanged to all pipes having outflows from the junction.  

2.2 Source Identification 

The proposed Source Identification (SI) module distinguishes from existing solutions by its real-time capabilities, its 

integration within the EMS and the permanent calculation of the monitoring state of the sensor network even in the case with 15 

no alarm. The latter is useful especially when flow directions change due to network operations. The continuous 

backtracking of negative sensor alarms allows the visualisation of the current monitoring state of the system. For any 

location in the network, the last time of observation is calculated. Given the limited coverage of the distribution network by 

the sensor network, a contamination may not be detected by the sensors because it can be outside of the covered area. It is 

important to be aware of this issue if other detections, like customer complaints, indicate an event contradicting the negative 20 

alarm states of the sensors.     

In the context of SAFEWATER, one basic requirement was that the source identification algorithm must deliver results 

almost in real-time.  For that reason, all kind of optimization based approaches (see Introduction) are not suitable due to the 

huge number of simulations and thus the long computing time that are required for stochastic optimization models.  

Therefore, a more direct approach was chosen for the solution of the inverse problem.  It has some similarities to the particle 25 

backtracking algorithm that was first presented by (Shang, Uber, & Polycarpou, 2002) and the approach presented by (De 

Sanctis, Shang, & Uber, 2010). Its core component is an event driven simplified transport algorithm that does not consider 

reaction and diffusion mechanisms as described in the previous section.  Another key performance indicator is the usage of 

memory.  In the presented approach, a special format was developed that is used for storing the characteristic lines of the 

transport equation MOC. This information can then be used for particle tracking (forward and backward) as well as 30 

reconstruction of time curves (at a certain location) or the concentration along a pipe at a certain time. For implementation in 

SAFEWATER, an event driven method is used that strongly simplifies the common water quality equations: Instead of 

concentrations, only binary quality states are calculated (contaminated/ not contaminated) neglecting reaction and diffusion 
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terms and using simplified mixing equations. An event is triggered every time a change in the (binary) boundary conditions 

occurs (for example start of intrusion in the forward case or release of a sensor alarm in the backward case).  The algorithm 

sends a separator front through the system following the flow velocity of the water in the pipes (forward) or working against 

it (backtracking case). The moving front separates the network into regions that have distinct values for the binary quality 

state (contaminated / not contaminated). In the revers case, a change in the sensor alarm state is considered as binary signal 5 

(no alarm -> alarm). Based on this simplifying assumption, memory requirements and calculation time are minimised in 

comparison with common water quality solvers. The fact that in case of a real event the substance and input concentration of 

a contamination is presumably not known may serve as justification for the simplifying assumptions.  

For solution of the source identification problem at each external time step (change of the flow vector) the alarm states of the 

sensors (positive, negative, unknown) are sent through the system in reverse time.  If at least one of the sensors is positive, 10 

the nodes and pipes upstream of the sensor are identified, which are possible candidates for the location of the contamination 

source.  If more sensors have positive alarm states, normally released at different times, the results of the backtracking 

calculations are combined.  Necessary conditions for source candidate locations are: 1) signals of all positive sensors passed 

the location during the backtracking, 2) no signal of a negative sensor was observed. Since the conditions are necessary but 

not sufficient, the backtracking, in general, cannot give unique source locations. Based on a worst case assumption a unique 15 

source location is selected that serves as input for a simplified look-ahead transport calculation that gives an estimation over 

the future spread of contamination. As worst case, the node with the biggest outflow volume is chosen.  This second step is 

necessary since the backtracking algorithm in general does not give unique results. The region of possible source locations 

can be quite large depending on the efficiency of the sensor network.  

It is important to mention that also negative sensor alarms deliver useful information.  The backtracking of negative alarm 20 

states (under the assumption of perfect sensors) identifies the nodes upstream of these sensors and the times when the signal 

passes the nodes.  A contamination starting from such node before the calculated arrival time of the negative separator front 

is not possible since, in this case, the sensor alarm state must have been positive as well.  Consequently, the nodes can be 

withdrawn from the list of source candidates. Another important application of backtracking of negative sensor alarms 

consists in the continuously updated monitoring state of the system.  The backtracking algorithm calculates a kind of reverse 25 

water age for each location under the protection of the sensor network.  That means that for any location the time of the last 

observation is known. In addition, the nodes and pipes that are not covered by the sensor network can be visualised and 

updated in real-time.   

For estimation of the future spread of contamination and the identification of isolation valves the simplified forward 

transport calculation is used.  Here, the assumption is again that more complicated water quality calculations such as 30 

incomplete mixing, reaction and diffusion are of secondary importance for this particular problem. It is expected that at the 

beginning of a real contamination event the kind and severity of the substance is unknown.  In the project SAFEWATER a 

second water quality solver was implemented that deals with all of these issues. Once more information about the chemical 
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properties of the agent is available, the enhanced water quality solver can be used for more detailed calculation of 

concentrations. 

3 Outline of the integration within the EMS 

For integration of the different software components within real-time environment and  the SAFEWATER-EMS, the existing 

software tool SirOPC was extended by implementation of additional plugins. Originally, SirOPC was developed for 5 

connecting hydraulic simulation software with common OPC Server software provided by SCADA system for receiving and 

sending real-time operational data. The plugin-technology allows the flexible extension of the software. For connection with 

external data, adapter plugins are used (blue boxes in Fig. 1). Application plugins allow the integration of specialized 

software tools (green boxes in Fig. 1) with the data managed by the Core component. The plugins provide the interfaces 

between the central data and native applications. For example, the hydraulic solver plugin includes the interface for updating 10 

boundary conditions of a hydraulic simulation model with SCADA-system data that are delivered through SirOPC and the 

OPC data adapter. The SIRA plugin is used to connect the source identification solver with the core software and manages 

the update of the flows calculated by the hydraulic solver.  For exchange of mass data, an additional database interface 

exists. For communication with the EMS, an ActiveMQ (2015) data adapter plugin has been developed in the project that is 

able to receive messages about changes in alarm states of the sensors that are detected by the EDS. Based on this 15 

information, the online variables are updated in the SirOPC Core from where the information is transferred to the SI-

algorithm. By implementation, the developed SI-module runs in combined online mode together with the hydraulic solver. 

The boundary conditions of the hydraulic solver are updated in regular time intervals by receiving data from the OPC server. 

After each time step calculated by the hydraulic solver, the flow velocities in the source identification algorithm are updated 

and new backtracking calculations are carried out. Positive alarms are generated by the EMS as soon as a pending alarm is 20 

acknowledged by the operator. Alarms could trigger calculations automatically, but in order to avoid false alarms due to 

known events, at this state of the development every alarm has to be manually acknowledged. After that, an ActiveMQ 

message is sent to SirOPC. The next SI calculation considers the positive alarm and calculates the possible locations for the 

source of contamination that are consistent with the alarm states of all sensors including negative sensor alarms.  
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Fig. 1: System Architecture of SI Integration within the SAFEWATER Event Management System 

As a possible response action, the valves are identified that have to be closed for isolation of the contaminant. The results of 

the different algorithms are presented in a native GUI of the SI-application as well as in the EMS-Map. The execution loop, 

which is in mutual feedback with the hydraulic simulator, is controlled by so-called Custom Commands, a kind of virtual 5 

state machine (Petri-Net). The results of the SI-calculations are stored in a database that can be accessed by the EMS for 

further processing and visualisation.   

4 Source Identification Module Example 

4.1 Calculation of source candidates 

In the following section the SI algorithm is demonstrated using the example of the SAFEWATER test network in Zurich 10 

(Fig. 2). The total pipe length of the network is about 160 m. The system consists of transparent PVC pipes (diameter 

100 mm) and has three major outlets that allow the operation with adjustable demands. In addition to flow and pressure 

measurements at the system inlet there are four additional flow measurements installed within the pipe network. The 

measurement devices are connected to a central OPC server.  The hydraulic online simulation is connected with the OPC 

server through a bidirectional interface provided by the online OPC client SirOPC. The hydraulic simulation runs every five 15 

seconds with updated boundary values from the OPC server. The calculation results, namely the flow velocities, are stored in 

a native binary data format from where they can be accessed by the SI-Plugin and transferred to the transport solvers.    
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Fig. 2: Test network with four sensors (orange circles) and contamination source (red circle) 

Water quality sensors are installed at five locations. Four sensors are distributed over the network (orange circles) and one is 

located directly downstream the contamination source (red circle) in order to control the entrance water quality for the 

injection scenarios. For demonstration purposes, the sensor alarm times were calculated by running a forward transport 5 

calculation that starts at 09:02 am. The SI-software tool is able to record the earliest time when the contamination passed the 

sensors. During the tests, a valve on the lower left hand side was closed. Therefore, there is almost no flow in direction 

towards sensor E and the alarm time is beyond the scenario end time (09:30 am). The subsequent alarm times are also shown 

in Fig. 2. From Fig. 3 it can be seen that the more information is available (through subsequent additional alarms), the 

smaller the area of possible source candidates (red marked pipes). In Fig. 3a) all pipes upstream of sensor B are possible 10 

locations. In Fig. 3b) the combination of the upstream pipes of sensor B and of sensor D decreases the set of source 

candidates because the locations directly upstream of sensor B cannot explain the alarm at sensor location D. The area is 

further reduced after the third alarm (Fig. 3c)). Possible source locations must be also upstream of sensor C. The orange and 

blue marked pipes show the estimated spread at the current time and in a predefined look-ahead time, respectively. 

sensor B 

sensor C 

sensor E sensor D 

sensor A 

and contami-  

nation source 

  
alarm times: 

sensor B: 09:04:03 

sensor D: 09:06:44 

sensor C: 09:13:26 

sensor E: > 09:30:00 

closed valve 

  

X 
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Fig. 3: Sequential release of sensor alarms and results of SI-algorithm, current spread of contaminant and look-ahead  

4.2 Impact of negative sensor alarms on source identification results and selection of single source 

The sensors do not only deliver valuable information in case of an alarm. Backtracking of negative sensor alarm states also 

helps to reduce the area of possible source candidates (see for comparison De Sanctis et. al., 2010). Assuming perfect 5 

sensors, the upstream locations of the negative sensors cannot be the contamination source since otherwise the contamination 

had to be detected by the sensor. Negative sensors can clear parts of the source candidate locations. A node (or pipe) is a 

possible candidate for the contamination source if the sensor signals of all sensors with positive alarms are observed and no 

signal of negative sensors can be found for these locations. A particular weighting schema has been implemented, 

considering also the duration and time delay between the different signals.  The criterion for a node to be source candidate 10 

location is that all signals that passed that node are positive signals. The set of source candidate locations consists of a more 

or less large area, depending on the design of the sensor network, the number of sensors and the topology of the network 

graph. For example, if forward calculations shall be carried out for the estimation of the current spread of contamination, a 

single source node has to be selected.  

a) 

b) 

c) 
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5 Conclusion 

In case of a contamination event, finding fast, efficient and simple response actions after detection is the key issue for 

mitigating contamination of drinking water distribution networks. The online source identification module indicates the 

possible locations of the source of contaminant and shows the current monitoring state at any location and any time. The 

presented SI module is integrated in combination with hydraulic online simulation within the SAFEWATER Event 5 

Management System. On the SI input side the hydraulic online simulator delivers system wide flow velocities needed for 

transport calculations based on actual process data that are received from a SCADA system using OPC technology. The 

continuous update of the model by online data aims at maintaining a sufficient match between the model parameters and the 

real situation in the field for changing operational conditions. This is a step forward and improves the situation compared to 

calculations based on offline models. However, it must not be forgotten that uncertainty in model parameters still exists, 10 

especially the demands, affecting also the accuracy of the results of the source identification algorithm. The number of 

unknown parameters normally exceeds the number of measurements by magnitude.  The alarm states of sensors are sent by 

the EMS using the communication channel ActiveMQ. As output, the module generates current monitoring states of the 

network and, in case of positive sensor alarm, the source candidate locations. The output is visualised in the GIS map of the 

EMS.  In addition to the tests for the network on lab scale, the functionality and applicability of the development of the 15 

approaches was also proven within the project for three pilot zone systems of real existing networks (details cannot be 

presented due to security reasons). Future work should focus on the enhancement of the calculation cycle. While the run time 

of the algorithms is considered to be sufficiently short also for large networks, the huge amount of data to be processed and 

transferred through the different modules is still a challenge for large real world applications.  
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