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Several algorithms are available in literature for optimal design of branched gravity-fed WDNs. Authors 

have chosen two out of them, a back tracking (BT) algorithm and a genetic algorithm (GA) without giving 

any proper justification of their selection. The chosen algorithms have been compared with a new 

calculus-based algorithm. I would like to suggest authors to provide advantage of proposed CB with those 

available in literature (Deb 1974, Bhave 1978, Chiplunkar and Khanna 1983, Fujiwara and Dey 1988, 

Young 1994, Johnson et al. 1996). Bhave’s (1978) approach is general and applicable to branched as well 

as looped networks, gravity as well as pumped source networks, and new as well as existing networks. In 

case of looped networks, primary pipes forming a branching configuration is identified and designed to 

carry maximum flows by considering secondary loop-forming links of some minimum size.   

  

Using calculus based approach, Bhave (1978) developed an optimal criterion similar to Eq. (9) of authors 

and expressed as  

{EQUATION FROM BHAVE – not retyped here.  Refer to the original review.} 

Where ij and jk are supply and distribution links at any node j; C and h are cost and head loss in any pipe.  

  

Bhave (1978) suggested a univariant method in which nodal heads are assumed initially and corrected 

iteratively in order to satisfy the optimal criteria at all nodes. Gupta et al. (2003) improved the method of 

solution adopting Newton-Raphson method in which all correction values are obtained simultaneously for 

faster convergence of iterative methodology.   

  

The equation (18) of author seems to be similar to Bhave’s optimality criterion, if minor losses are 

ignored. Authors are requested to clearly point out the difference with Bhave’s optimality criteria. Also, a 

systematic procedure or flow chart should be included to apply the proposed methodology to design water 

networks.  

  

Even though outcome of the paper is general and nothing new in it, the paper can be recommended if the 

difference between the proposed CB method with Bhave’s CB method is clearly indicated and proposed 

methodology is explained by giving procedure or flowchart.  
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Author’s Response: 

1. Thank you for your detailed response to our paper. 

2. As background, the motivation for cost optimization for the Q-specified condition (we refer to this 

as a demand-driven design), on which all our designs and studies are based, is twofold: 

a. To produce the lowest possible cost for a GDWN that satisfies the minimum-head 

requirement at all nodes subject to the flow rate constraints 

b. To produce a unique solution to the design problem, which in the absence of cost 

minimization, produces no unique solution for D.  This is noted on pp. 2, 3, and 6 in the 

paper.  
3. The problem considered in this paper is that of selecting a single pipe diameter for each link in a 

water network to optimize the material cost. This problem has three major categories of methods 

that are applicable to it: enumeration methods (including both complete enumeration and partial 

enumeration), nonlinear programming methods, and metaheuristic methods. For each of these 

categories we have proposed and tested one representative algorithm: backtracking (partial 

enumeration), the Jones calculus-based algorithm (nonlinear programming), and a genetic 

algorithm (metaheuristic). While there are many other types of metaheuristic algorithms 

(simulated annealing, Tabu search, cellular automata, ant colony optimization, and particle swarm 

optimization), the genetic algorithm is the most representative of these and is also the most 

commonly used (Zhao et al. 2016). 

Note that we have categorized the backtracking algorithm as a partial enumeration method and not 

a heuristic algorithm. The backtracking algorithm, like heuristic methods, follows a set of 

deterministic rules to find better solutions, however, those rules are strictly formulated to find 

cost-optimal solutions and does so without missing the global optimum. In contrast, heuristic 

algorithms follow rules which achieve some proxy of an optimum solution but do not guarantee 

the global optimum. One example of a heuristic algorithm comes from Suribabu (2012), whose 

algorithm uses the uniformity of a solution’s flow velocity as a proxy for its cost-optimality. As 

such, the Suribabu algorithm increments a pipe diameter when its flow velocity is high and 

decrements the diameter when its flow velocity is low, in an attempt to approach more optimal 

solutions. It was not necessary to include such a heuristic algorithm for comparison in this paper, 

since the Backtracking algorithm presented follows a more strictly formulated set of rules which 

do guarantee a cost optimum. 

We note that other methods which can be applied to water network design do not address the 

problem addressed in this paper. For example, linear programming methods provide split-pipe 

solutions for each link, while the problem addressed here calls for each link to have a single 

diameter solution. Multi-objective optimization methods, which typically involve new 

implementations of metaheuristic methods, are also outside the scope of (single-objective) cost 

optimization, although it should be noted that cost-optimization algorithms, such as the ones used 

in this paper, can be used within multi-objective implementations. In addition, decomposition 

methods, where networks are broken down into smaller sub-networks, can use any of the methods 

listed above, and are therefore not an exclusive method category. Given the appropriateness of the 

presented algorithms to the network sizes of gravity water networks, decomposition was not 

necessary. 

We have added a more thorough description to our introduction section that gives clearer context 

to the selection of these algorithms, highlighting the category of method to which they belong and 

the key features that make them distinct from one another. 

Suribabu, C. R.: Heuristic-based pipe dimensioning model for water distribution networks, J. 

Pipeline Syst. Eng. Pract., 3(4), 115–124, doi:10.1061/(ASCE)PS.1949-1204.0000104, 2012. 



Zhao, W., Beach, T., and Rezgui, Y.: Optimization of Potable Water Distribution and Wastewater 

Collection Networks: A Systematic Review and Future Research Directions, IEEE 

Transactions on Systems, Man, and Cybernetics: Systems, 46 (5), 659-681, 

doi:10.1109/TSMC.2015.2461188, 2016. 

4. Equations (15) and (18) are the principal results of our CB modeling, where (18) includes minor 

losses and a two-part pipe cost model, which is more robust compared with the one-part pipe cost 

model of (15).  The greater extent of agreement with pipe cost data shown in Figure 3 affirms this.  

The one-part pipe cost model is used as a simple case to help with reader understanding of the CB 

results.        

5. At the request of the reviewer, we have the following observations when comparing Equation (18) 

and, in its more-restrictive form, Equation (15) to the Bhave equation above. 

a. The fundamental difference of the Bhave approach compared with ours is that Bhave uses 

an iterative method to solve the design problem and we do not.  As such, there are several 

qualifications leading up to the Bhave equation (as above) in his paper.  Among them is 

that variations in Hj between two iterations is small so that the terms in the cost function 

may be approximated as constants (Equation (13) in Bhave).  This apparently also includes 

the cost exponent m in the Bhave paper, where normally m = m(D).  Upon taking the 

derivative of Equation (15) in the Bhave paper, m must be assumed constant or else there 

would result an additive term to each side of Equation (16) in Bhave that is Hj ln(Hj) 

dm/dHj to account for the m-dependence on Hj.  This term does not appear.  Thus, we 

reason this is because ln(Hj)new - ln(Hj)old between two successive iterations is taken to be 

zero ((Hj)new/(Hj)old=1).  Our method uses our Equations (15) or (18) written at all internal 

nodes and includes this equation along with the energy equation for each link to solve for 

the head at each internal node and all link diameters that collectively minimize network 

cost.  The constraint of hj > hmin at each node is, of course, included in the solution.  

Algorithms to solve a general set of independent, nonlinear algebraic equations using, for 

example, the Levenberg-Marquardt, Quasi-Newton, Newton-Raphson, or Conjugate 

Gradient methods are available in most commercial math packages including Matlab and 

Mathcad (we use the latter with the Quasi-Newton method). In particular, the cost-function 

coefficient and exponent (b in our paper) are not assumed constant at any node joining two 

sets of links; see our Equation (18). Nor do we make any assumptions on the orders of 

magnitude of the terms in our equations to simplify them. In Equation (18) in our paper, 

the cost-function derivative (Equation (21)), term C’, explicitly accounts for the variation 

in b. A continuous function (a cubic polynomial; the smallest possible order) is fit over the 

transition between the small-D and large-D regions of the pipe cost function.  Because 

there is no iterative procedure, there is no flow chart to illustrate our solution.  However, 

based on your comments we have added a few sentences describing the difference between 

our approach and that of Bhave and a new figure to show the notation ij and jk at a node.  

Also included is a more-complete description of our method of solution. We believe these 

additions have added to the level of quality of our paper.  Thank you.     

b. Because of the lack of restrictions of Equations (15) and (18) in our paper, the CB 

algorithm can be applied to any pipe network including serial, branch, and loop. For serial 

networks, in particular, where the flow rate across a node is constant, one can clearly see 

from inspection of Equation (15) the optimal solution of a constant hydraulic gradient (Sij) 

or Dij = Djk = constant for any two links provided hj > hmin. 

c. The development of Equation (16) in Bhave is not explicitly given, as the steps between 

his Equations (15) and (16) are not shown in his paper.  Conversely, all steps in the 

development of our Equation (15) appear in our paper, so readers are unambiguously 

informed of the origin of this equation and its variant, Equation (18).   
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Abstract. The design of a water network requires the selection of pipe diameters that satisfy pressure and flow requirements 

while optimizing for cost. This work focuses on the design of moderate-scale branching Gravity-Driven Water Networks 

(GDWNs), in contrast to large urban-scale looping networks, where budgets are highly constrained and where Polyvinyl 

chloride (PVC) pipe is typically used.   To help designers of GDWNs select an appropriate design approach for a given network 

problem, three cost-minimization algorithms are presented and results compared with five GDWN test cases. Two algorithms, 10 

a backtracking algorithm and a genetic algorithm, use a set of discrete pipe diameters, while a new calculus-based algorithm 

produces a continuous-diameter solution, which is mapped onto a discrete-diameter solution. The backtracking algorithm 

produced the overall lowest-cost solutions with relative efficiency for the test cases, while the calculus-based algorithm 

produced slightly higher-cost results but with greater scalability to networks with more links. Furthermore, the new calculus-

based algorithm’s continuous-diameter and mapped solutions provided lower and upper bounds, respectively, on the discrete-15 

diameter global optimum cost, where the mapped solutions were typically within one diameter size of the global optimum. 

Overall, the genetic algorithm as implemented did not produce results which deemed it compelling over deterministic methods 

for GDWN design.  However, for more complex networks and problem formulations, a genetic algorithm may be more 

advantageous, particularly if it incorporates improvements reported in the literature. The results of this study highlight the 

advantages and weaknesses of each GDWN design method including closeness to the global optimum, the ability to prune the 20 

solution space of infeasible and sub-optimal candidates without missing the global optimum, and calculation time. We also 

extend an existing closed-form model of Jones (210) to include minor losses, a more-comprehensive two-part cost model, 

which realistically applies to pipe sizes that span a broad range typical of GDWNs of interest in this work, and for smooth and 

commercial steel roughness values. 

1   Introduction 25 

A gravity-driven water network (GDWN) is commonly constructed to deliver potable water to a community in a 

developing region.  These systems draw water from a source at a high elevation, such as a natural spring or a stream, and 

deliver it through a branching pipe network to household taps or public tapstands (Fig. 1). In principal, loops and 
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loop/branching constructs may be added to networks for greater reliability, but material cost considerations often restrict 

attention to just branch networks in GDWNs. The methodologies presented in this paper, however, may be extended to all 

networks, including those with loops.  When feasible, gravity water networks are very attractive compared with pumped 

networks because of their simplicity and lower capital, operational, and maintenance costs.  In addition, in most locations 

where GDWN are considered, there may be little or no access to reliable grid-based electrical power for pumps.    5 

Water networks are modelled as a collection of nodes, each representing a point of water demand or supply, which 

are connected with links representing pipes. Typically, the layout of the site is known, including water source and demand 

locations and elevations of all other nodes.  For the present work, design flow rates are determined from community survey 

data, which are extrapolated for future population growth.   Networks in this category are referred to as “demand-driven” 

designs.  Bhave (1978) refers to these as “Q-specified” designs. Thus, to design a network of this type, pipe diameters for each 10 

link must be chosen such that acceptable but arbitrary minimum pressure heads are maintained at each node given a design 

flow rate at the node. Furthermore, application of the energy equation to this network demonstrates that the design problem is 

non-unique; i.e., choosing different pressure heads at the nodes will result in a different pipe diameter solution for the network, 

and thus different networks costs.        

In practice, gravity-driven water networks are commonly designed by a marching method, where diameters for each 15 

link of the network are chosen sequentially. After selecting a reasonable diameter for each link, the designer calculates the 

static pressure head at the link outlet, and proceeds to the next link if this result is acceptable. In this way, the designer marches 

through the network until all pipe diameters have been selected. This method produces a feasible solution, but not a cost-

optimized one. As noted by Bhave (2003), cost savings of 20-30% can result from the use of optimization techniques. In 

developing regions, the cost of a water network can be prohibitive, adding to the importance of optimizing network design.  20 

Within the provided framework, the global optimum can be found through an exhaustive search of the solution space, 

known as complete enumeration, although this is infeasible when considering networks with many links and diameter choices 

(Kadu et al. 2008; González-Cebollada 2011). To reduce the computational time required by enumeration, authors have 

proposed various partial enumeration methods which prune the search space (Kadu et al. 2008), although some of these 

techniques may remove the global optimum (Simpson et al. 1994). The most common types of algorithms that have been 25 

applied to optimize water network design include traditional deterministic methods, heuristic methods, metaheuristic methods, 

multi-objective methods, and decomposition methods (Zhao et al. 2016). 

Deterministic methods include linear programming (LP), dynamic programming, and nonlinear programming (NLP), 

and typically involve rigorous mathematical approaches (Zhao et al. 2016). A brief overview and comparison of these 

algorithms is given in Kansal, et al. (1996), who use a single-part cost correlation for metric pipe diameters between 100 mm 30 

and 350 mm. Linear programming techniques have relatively low computational complexity and allow each link to be 

composed of two diameters, called a split-pipe solution, although these may not always be practical to implement (Kessler and 

Shamir 1989, Swamee and Sharma 2000, Samani and Mottaghi 2006). LP can also get stuck in a local optimum (Zhao et al. 
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2016), although combining LP with metaheuristic techniques can help with the problem’s non-smoothness properties 

(Krapivka and Ostfeld 2009). Dynamic programming has been used by Yang et al. (1975) and Martin (1980) to optimize 

networks in stages. This approach begins at the discharge nodes, proceeding to select feasible diameters and joints for upstream 

stages and storing these partial candidates in memory until the source node is reached. At this point, the algorithm reviews the 

feasible segment design options and selects a combination of stage solutions producing the lowest cost overall solution. This 5 

method, however, requires the designer to allow a relatively narrow range for the design pressure of each node, or otherwise 

store a large set of feasible candidate solutions in memory and also allow adjoining branches to arrive at different heads at the 

same node.  

Nonlinear programming, a calculus-based method, deals with each link’s diameter as a continuous variable. Using 

Lagrange multipliers and a one-part, pipe-cost model with minor-lossless flow, Swamee and Sharma (2000) developed systems 10 

of equations for both continuous and discrete pipe diameters for branch networks, assuming constant friction factor. When 

solved, the solution gives diameter values that minimize distribution main cost, not network cost.  In carrying out the solution, 

iteration is required to update the value of the friction factor.  For the discrete diameter case, large computational times were 

noted by Swamee and Sharma because of the stiffness of the mathematical system.  Cases where one or more nodal pressure 

heads are not acceptable need to be treated manually by the designer in various ways as discussed by the authors.  15 

For branching networks, Jones (2011) showed that by restricting the focus to smooth-turbulent, minor-lossless flow, 

and the use of a one-part, pipe-cost model, a simple nonlinear algebraic equation for each internal node in the distribution main 

could be developed.  The equation has been extended in the present work to include minor losses and rough pipe.  When solved 

simultaneously with the energy equation for each link, a unique solution for all link diameters and nodal pressure head values 

are obtained that produces minimum network cost, as opposed to the distribution main cost as in Swamee and Sharma (2000).  20 

The method of Jones (2011) also applies to serial and loop networks because of its generality.  

Heuristic methods follow specific rules to incrementally build better solutions, although the rules are not strictly 

formulated to trend towards local or global optima. An approach by Monbaliu et al. (1990) sets all network pipes to their 

minimum size, where the pipe that has a maximum head loss gradient is incremented to its next-highest size until all nodal 

head requirements are satisfied. Similarly, an algorithm by Keedwell and Khu (2006) selects an initial solution and iteratively 25 

responds to nodal head deficits and surpluses by incrementing or decrementing pipe sizes accordingly until a feasible solution 

is found. Suribabu (2012) proposed a heuristic that identifies pipes to increment or decrement in size based on flow velocity 

and alternative metrics such as proximity to the source node, achieving acceptable cost results with computational efficiency. 

While these algorithms are typically computationally efficient, they do not guarantee a global optimum. 

Metaheuristic optimization methods allow for a set of solutions to evolve through random processes that are guided 30 

with an objective function which rewards low network costs and penalizes hydraulic insufficiencies. Examples include 

evolutionary algorithms, which are most commonly genetic algorithms (Krapivka and Ostfeld 2009, Simpson et al. 1994, Kadu 

et al. 2008, Prasad and Park 2004), simulated annealing (Vasan and Simonovic 2010; Tospornsampan et al. 2007), ant colony 
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optimization (Maier et al. 2003), and differential evolution (Vasan and Simonovic 2010). As reviewed by Nicklow et al. (2010), 

evolutionary algorithms are an emerging popular alternative to the deterministic methods, and they offer the opportunity to 

accommodate unique constraints and multiple design objectives. The main challenges for evolutionary algorithms are the 

difficulty of incorporating constraints into objective functions, the optimum selection of parameters, and a relatively large 

amount of computational effort. In addition to optimizing for cost, multi-objective methods, often based on evolutionary 5 

algorithms, allow the designer to choose from a Pareto-optimal front of objectives, such as cost and reliability (Prasad and 

Park 2004). In addition to water network design, metaheuristic algorithms have been used for a range of problems in water 

resources engineering, such as rainfall and runoff modelling (Taormina et al. 2015). 

Decomposition methods involve the partitioning of networks into smaller sub-networks which are each optimized 

using one of many types of techniques and then combined into an overall solution. In some cases, the loops in the sub-networks 10 

are removed, producing branching trees which are then optimized individually. Techniques used to optimize the sub-networks 

can involve multiple methods, including linear programming (Saldarriaga 2013) and differential evolution (Zheng et al. 2013), 

with a later stage optimizing the network as a whole using the sub-network solutions as inputs. Note that another distinct use 

of the term ‘decomposition’ refers to the approach of iteratively solving “inner” and “outer” mathematical problem 

formulations, and has been used in the literature by Krapivka and Ostfeld (2009) who traces its use in this context back to 15 

Alperovits and Shamir (1977).  

In the present study, we present three algorithms, each from one of three major categories of methods applied to cost 

optimization of water distribution networks, and compare their performance on five cases adapted from real GDWNs. These 

algorithms include (1) the calculus-based (CB) optimization model of Jones (2011), an NLP method, (2) backtracking (BT), a 

partial enumeration method, and (3) a genetic algorithm (GA), a metaheuristic method. Major distinguishing features of these 20 

algorithms include their working use of continuous diameters (CB) versus discrete diameters (BT and GA), their deterministic 

nature (CB and BT) versus a stochastic nature (GA), and their relative scalability as better (CB, GA) and worse (BT) for larger 

networks. In terms of their ability to find a global optimum solution for the problem formulation, CB finds a global optimum 

for continuous diameters but cannot guarantee a discrete diameter global optimum in its mapped solution, BT can guarantee a 

discrete global optimum, and GA cannot guarantee an optimum. For a direct comparison of techniques, the pipe costs used for 25 

all algorithms are found by interpolating a two-part cost formula based on a curve-fit of real cost data for available diameter 

values. The three algorithms are tested against networks adapted from field data on five actual GDWNs installed in Panama, 

Nicaragua, and the Philippines.  

Within the broader context of water network problem formulations, this paper is concerned with finding cost-optimal 

single-diameter solutions to branching water distribution networks with steady-state demand flows and pre-specified pipe 30 

locations.. By implication of being gravity-driven, the problem does not involve the use of pumping stations. This problem 

formulation is directly applicable to typical gravity-driven water networks, and is also useful for multi-objective algorithms, 
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the consideration of sub-networks in a decomposition technique, pumped networks, and looped system optimization, which 

can involve reformulating the problem into a branching configuration. 

The results of this study highlight the advantages and weaknesses of each GDWN design method including closeness 

to the global optimum, the ability to prune the solution space of infeasible and sub-optimal candidates without missing the 

global optimum, and also computational time. We present two pre-processors with which discrete-diameter search methods 5 

can use to reduce the search space without pruning the global optimum. To the authors’ knowledge, is the first implementation 

of Pre-Processor 1 in enumeration methods and the first implementation of Pre-Processor 2 in any method. We also extend the 

Jones closed-form model to include minor losses, a more-comprehensive two-part cost model, which realistically applies to 

pipe sizes that span a broad range typical of GDWNs of interest in this work, and for smooth and commercial steel roughness 

values. 10 

2   Problem Formulation 

Branching networks are considered (Fig. 1), where all branches connect a distribution main node with a delivery 

node, shown as tapstands or houses. For each link in a network of NL links, pipe length (𝐿) and the net elevation change (Δ𝑧) 

are considered fixed. Steady-state flow rates (𝑄) are prescribed for each link based on the demand flow data at delivery nodes. 

As noted above, demand flows are determined by community surveys and extrapolated in time to quantitatively account for 15 

population growth.  Minor losses are accounted for through a minor loss coefficient 𝐾 or a dimensionless equivalent pipe 

length, (𝐿𝑒/𝐷, or in symbol form, 𝐿𝑒𝑏𝑦𝑑), where Le is the pipe length of diameter D whose frictional loss results in the 

corresponding minor loss.  An optimal solution is obtained by selecting pipe diameters (𝐷) from a set of commercially available 

diameters such that the network’s material cost is minimized. With 𝑁𝐷 choices of diameters for 𝑁𝐿 links, the problem has 𝑁𝐷
𝑁𝐿 

candidate solutions. 20 

For all nodes, static pressure, ℎ, is greater than or equal to a chosen minimum, ℎ𝑚𝑖𝑛 . The value for ℎ𝑚𝑖𝑛  is selected 

to eliminate possible leakage of contaminated ground water into the network should the operating conditions change in an 

unanticipated way.  The change in static pressure head, Δℎ, across each link is calculated with the energy equation for pipe 

flow, 

Δℎ = −Δ𝑧 + (𝛼 + 𝐾 + 𝑓 (
𝐿

𝐷
+ 𝐿𝑒𝑏𝑦𝐷))

8𝑄2

𝜋2𝑔𝐷4
   (1) 

where for each link, is the kinetic energy correction factor and  f  is the Darcy friction factor, calculated with the Colebrook-25 

White equation (Colebrook and White 1937) or Churchill correlation (Churchill 1977), and 𝑔 is acceleration of gravity.  The 

kinetic energy correction factor, 𝛼, is considered only in the first link, where acceleration from a zero-velocity source is 

sometimes non-negligible for the smallest of GDWNs that have been encountered.  Thus, 



6 

 

 

𝛼 = {
  2        Re ≤ 2300
  1.05  Re > 2300

 

where Re is the Reynolds number for pipe flow, 4Q/   D, and  is the kinematic viscosity of water. The possibility of laminar 

flow (Re ≤ 2300) is permitted since branches from the smallest GDWN observed in practice have been in this regime.  

The pressure upper bound is not incorporated into the optimization process. Worst-case pressure conditions occur 

under hydrostatic conditions, which are directly related to the maximum elevation change in the network and where no flow 5 

occurs. Therefore, before the optimization process is undertaken, the selections of appropriate pressure ratings for the pipe 

and, if needed, break-pressure tanks are left to the correct judgment of the designer under no-flow conditions. In addition, 

precautions against water hammer are left to the designer. 

3   New Calculus-Based Algorithm 

In this section we develop a new calculus-based algorithm for pipe diameters that minimize overall pipe cost for the 10 

network. First appearing in the text by Jones (2011), this algorithm is solved simultaneously with the energy equation for each 

link to produce unique solutions for D and nodal pressure head values that minimize network pipe cost, as opposed to only the 

distribution main cost as in Swamee and Sharma (2000).  The method also applies to serial and loop networks.     

First consider the physical basis for the existence of a unique set of pipe diameters and static pressures for the demand-

driven design problem with cost minimization included. Several works reviewed in the previous section have considered 15 

optimization of GDWN and combined pumped and gravity-driven networks.  We assume continuous pipe diameters in this 

section; values that result from the solution of the energy equation.  Mapping between continuous diameters and the discrete 

nominal sizes, required to complete the design, will not be fully addressed in the present work.  However, we will discuss two 

methods we have used for mapping the continuous D solutions onto the discrete pipe diameter set.    

Consider the three-pipe network shown in Fig. 2. Pipes 1-2, 2-3, and 2-4 meet where head ℎ2 is unknown.  Each pipe 20 

has prescribed volume flow rate and length and unknown diameter 𝐷 as shown. The change in elevation between the top and 

bottom of each pipe is Δ𝑧 and Δℎ is the change in static pressure head. There is a prescribed head at each outlet for pipes 2-3 

and 2-4.  

To facilitate insight, we at first assume turbulent flow, which can be verified post-calculation if necessary, in smooth 

pipe and that minor losses are negligible. Two sources for the friction factor for smooth-turbulent flow are considered, namely 25 

the classical Blasius equation (reported in Streeter et al. 1998), f  = 0.316 Re-1/4, and the Swamee-Jain correlation (Swamee 

and Jain 1976), f  = 0.175 Re-0.1923 (though not explicitly appearing in this reference, f  from the Swamee-Jain correlation is 

obtained by writing it for smooth pipe and comparing this with the energy equation, where f is assumed to be in the form  

a Ren).  The Blasius equation has higher accuracy (2% for low Re and 3% for high Re) in the range 104 < Re < 105, over which 

most of the GDWNs in this work operate, compared with the Swamee-Jain correlation of +8% / -3%, thus prompting the 30 

Blasius equation to be chosen for this work.  A combination of the Blasius equation with the energy equation gives explicit 
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formulas for 𝐷 for the three links in Fig. 2. For simplicity, and to reduce the number of free parameters, the conditions for 

pipes 2-3 and 2-4 are assumed to be identical without loss of generality. We obtain  

 

𝐷12 = 0.741 (
𝛥𝑧12 + 𝛥ℎ12

𝐿1
)−4/19(

𝑄12 𝜈
1/7

𝑔4/7
)7/19 

𝐷23 = 𝐷24 = 0.741 (
𝛥𝑧23 + 𝛥ℎ23

𝐿2
)−4/19(

𝑄23 𝜈
1/7

𝑔4/7
)7/19 

 (2) 

With our assumptions and inspection of Fig. 2, Δℎ12 = −ℎ2 and Δℎ23 = Δℎ24 = ℎ2 − ℎ3 = ℎ2 − ℎ4, obtain  

 

𝐷12 = 0.741 (
𝛥𝑧12 − ℎ2

𝐿1
)−4/19(

𝑄12  𝜈
1/7

𝑔4/7
)7/19 

𝐷23 = 𝐷24 = 0.741 (
𝛥𝑧23 − ℎ3 + ℎ2

𝐿2
)−4/19(

𝑄23  𝜈
1/7

𝑔4/7
)7/19 

 (3) 

The pipe cost model can be assumed to follow a power-law relationship (Swamee and Sharma 2008) 

 𝐶′ = 𝑎 (
𝐷

𝐷𝑢
)𝑏 (4) 

where 𝑎 is a constant coefficient, 𝑏 is a constant exponent, and 𝐷𝑢 an assumed unit diameter. A more robust, two-part model, 5 

valid for a greater range of pipe sizes than that of Swamee and Sharma (2008), will be used below. The use of pipe material 

cost as the objective function was assumed because of relevance. In most GDWNs of interest in this work, installation labor 

comes from the local community and has no well-defined associated cost. The material cost for the network is of prime 

importance since it normally comes from funds raised by nongovernmental organizations or grants, where there is seldom a 

required repayment but are always in short supply. For a more-general case, the economics of a GDWN may be more 10 

encompassing and include materials, labor, operation and maintenance, depreciation, taxes, and salvage, among others. The 

time value of money may also need to be considered, which includes interest rates and estimation of the network lifetime.  

With Eq. (4) the general expression for the total cost for the pipe material, 𝐶𝑇, is obtained by summing over all links 

𝑖𝑗,  

 𝐶𝑇 = 𝑎 ∑   𝐿𝑖𝑗 (
𝐷𝑖𝑗

𝐷𝑢
)
b

𝑖𝑗

 (5) 

which, for the present problem, becomes  15 

 

 

 

 

𝐶𝑇 = 𝑎  [ 𝐿12 (
𝐷12
𝐷𝑢
)
𝑏

+ 𝐿23 (
𝐷23
𝐷𝑢
)
𝑏

+ 𝐿24 (
𝐷24
𝐷𝑢
)
𝑏

] 

       = 𝑎  [𝐿12 (
𝐷12
𝐷𝑢
)
𝑏

+ 2𝐿23 (
𝐷23
𝐷𝑢
)
𝑏

] 

(6) 

A close inspection of Eq. (3) in combination with Eq. (6) will reveal the origin of the existence of an optimal ℎ2 for 

the design of the network in Fig. 2. Because of its arbitrariness, we are free to vary the value of ℎ2. As ℎ2 increases, say from 

a small value like 1 m, the pressure difference between the junction and the bottom of pipe 2-3 (and 2-4) increases. Since the 



8 

 

 

volume flow rates in each pipe are fixed, an increase in pressure drop across pipe 2-3 (and 2-4) requires a reduction in 𝐷23 

(and 𝐷24). This is evident from our inspection of the second of Eq. (3), where we see that 𝐷23 and 𝐷24 are both proportional 

to (Δ𝑧12 − ℎ3 + ℎ2)
−4/19; that is (Δ𝑧12 − ℎ3 + ℎ2)

−4/19 decreases as ℎ2 increases. 

Because the top of pipe 1-2 is at atmospheric pressure, an increase in ℎ2 will decrease the pressure drop between the 

top of pipe 1-2 and the junction. Thus, compared with pipes 2-3 and 2-4, the opposite effect occurs in pipe 1-2; 𝐷12 increases 5 

with increasing ℎ2. For insight on how the energy equation supports this explanation, note that the first of Eqs. (3) requires 

that 𝐷12 ≈ (Δ𝑧12 − ℎ2)
−4/19 increases as ℎ2 increases.  

From this discussion it is clear that for an increasing ℎ2 there is a competition between the decrease of 𝐷23 (and 𝐷24) 

and an increase in 𝐷12. Once the effect of 𝐷 on pipe cost is included through Eq. (6), as ℎ2 increases we see that the cost for 

pipes 2-3 and 2-4 decrease, and the cost for pipe 1-2 increases. A consequence of this competition is the existence of an 10 

optimum, in this case an optimal ℎ2, which produces the smallest possible cost.  

The mathematical basis for a unique solution for  ℎ2 with cost minimization is now presented. In addition to the fixed 

pipe lengths, the total cost depends on the diameters for all of the pipes in the network. For the case of Fig. 2, where we now 

allow pipe 2-3 and pipe 2-4 to be different, get 

 𝐶𝑇 = 𝐶𝑇(𝐷12(ℎ2), 𝐷23(ℎ2), 𝐷24(ℎ2)) (7) 

Using the chain rule from the calculus, the total differential of Eq. (7) is 15 

 
𝑑𝐶𝑇 =

𝜕𝐶𝑇
𝜕𝐷12

𝜕𝐷12
𝜕ℎ2

 𝑑ℎ2 +
𝜕𝐶𝑇
𝜕𝐷23

𝜕𝐷23
𝜕ℎ2

 𝑑ℎ2  +
𝜕𝐶𝑇
𝜕𝐷24

𝜕𝐷24
𝜕ℎ2

 𝑑ℎ2 

 

(8) 

The minimum value of 𝐶𝑇 is found once 𝑑𝐶𝑇 = 0 (and once it is verified that the second derivative of 𝐶𝑇 is positive thus 

indicating that 𝐶𝑇 is indeed a minimum). Requiring this, obtain 

 

 

The cost 𝐶𝑇 is from Eq. (5), so the derivatives like 𝜕𝐶𝑇/𝜕𝐷12 in Eq. (9) are written in general as  20 

 
𝜕𝐶𝑇
𝜕𝐷𝑖𝑗

= 𝑎 𝑏
𝐷𝑖𝑗
𝑏−1

𝐷𝑢
𝑏
𝐿𝑖𝑗  (10) 

for any link 𝑖𝑗.  

The derivatives like 𝜕𝐷12/𝜕ℎ2 in Eq. (9) are obtained by taking the partial derivative of the pipe diameter with respect 

to the relevant pressure head in the appropriate energy equation. For the full energy equation, where 𝐷 appears in a nonlinear 

0 =
𝜕𝐶𝑇
𝜕𝐷12

𝜕𝐷12
𝜕ℎ2

+
𝜕𝐶𝑇
𝜕𝐷23

𝜕𝐷23
𝜕ℎ2

+
𝜕𝐶𝑇
𝜕𝐷24

𝜕𝐷24
𝜕ℎ2

 (9) 
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way in more than one location, this would be done using numerical methods. However, if we restrict our interest to minor-

lossless, smooth-turbulent flow as noted above, we can use the energy equations like Eq. (3). Obtain for pipe 1-2  

 
𝜕𝐷12
𝜕ℎ2

= 0.156(
𝛥𝑧12 − ℎ2

𝐿12
)−23/19(

𝜈1/7 𝑄12

𝑔4/7 𝐿12
19/7

)7/19 (11) 

For pipe 2-3, we get  

 

𝜕𝐷23
𝜕ℎ2

= −0.156(
𝛥𝑧23 + ℎ2 − ℎ3

𝐿23
)−23/19(

𝜈1/7 𝑄23

𝑔4/7 𝐿23
19/7

)7/19 

(12) 

and for pipe 2-4,  

 𝜕𝐷24
𝜕ℎ2

= −0.156 (
𝛥𝑧24 + ℎ2 − ℎ4

𝐿24
)

23
19

(
𝜈
1
7  𝑄24

𝑔
4
7 𝐿24

19
7

)

7
19

 (13) 

Equations (10)–(13) are combined with Eq. (9) to produce a single algebraic equation that depends on ℎ2, as well as 𝐷12, 𝐷23, 5 

and 𝐷24. Introducing 𝐷12, 𝐷23, and 𝐷24 from Eqs (3) into this single algebraic equation, we get  

 

0 = 𝑄12
7𝑏/19

(
𝛥𝑧12 − ℎ2

𝐿12
)−(1+4𝑏/19) − 𝑄23

7𝑏/19
(
𝛥𝑧23 + ℎ2 − ℎ3

𝐿23
)−(1+4𝑏/19)

− 𝑄24
7𝑏/19

(
𝛥𝑧24 + ℎ2 − ℎ4

𝐿24
)−(1+4𝑏/19) 

(14) 

The general form of Eq. (14), written at any internal node is 

  0 = ∑  

𝑖𝑗,𝑖𝑛

𝑄𝑖𝑗
7𝑏/19

𝑆𝑖𝑗
−(1+4𝑏/19)

− ∑  

𝑖𝑗,𝑜𝑢𝑡

𝑄𝑖𝑗
7𝑏/19

𝑆𝑖𝑗
−(1+4𝑏/19)

 (15) 

where the hydraulic gradient, 𝑆𝑖𝑗 , is 

  𝑆𝑖𝑗 =
𝛥𝑧𝑖𝑗 + 𝛥ℎ𝑖𝑗

𝐿𝑖𝑗
 (16) 

In Eq. (15) the indices ij,in and ij,out on the summations refer to inflows and outflows at the node (e.g., in Fig. 2, ij,in 

=12  and ij,out = 23 and 24). Equation (15), the new CB algorithm proposed in this work, is written for each internal node in 10 

the network and solved simultaneously with the energy equation for each link to obtain unique and optimal values of Dij for 

all links and hj for all internal nodes. It is understood that the nodal pressure heads determined from the solution of this system 

must be greater than or equal to the hmin prescribed for the network.  For nodes that do not satisfy this condition, the pressure 

head is set equal to hmin, as part of the CB algorithm.  Thus hj > hmin.     

Minor losses using the equivalent-length method can be included in the above developments by artificially extending 15 

the length of the link by 𝐿𝑒 in which minor loss occurs, thus contributing a non-zero 𝐿𝑒𝑏𝑦𝑑 term in Eq. (1). We also extend the 

cost model of Eq. (5) from Swamee and Sharma (2008) to encompass two different ranges of pipe diameters having two 
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different coefficients a and exponents b. The link between the two ranges starts at discrete pipe size Dco, at and below which 

the cost model for the small (subscript s) pipe sizes applies, and discrete pipe size Dco+1, at and above which the cost model 

for the large (subscript l ) pipe sizes applies. The cutoff diameter, Dco is chosen by the designer based on inspection of cost vs. 

diameter data. Thus, 

 𝐶𝑖𝑗 = 𝐿𝑖𝑗

{
  
 

  
 𝑎𝑠(

𝐷𝑖𝑗

𝐷𝑢
)𝑏𝑠 , 𝐷𝑖𝑗 ≤ 𝐷𝑐𝑜

𝑐1 + 𝑐2
𝐷𝑖𝑗

𝐷𝑢
+ 𝑐3 (

𝐷𝑖𝑗

𝐷𝑢
)
2

+ 𝑐4 (
𝐷𝑖𝑗

𝐷𝑢
)
3

, 𝐷𝑐𝑜 < 𝐷𝑖𝑗 < 𝐷𝑐𝑜+1

𝑎ℓ(
𝐷𝑖𝑗

𝐷𝑢
)𝑏ℓ , 𝐷𝑖𝑗 ≥ 𝐷𝑐𝑜+1

 (17) 

In Eq. (17), 𝑎𝑠  and 𝑎ℓ  are the coefficients for the small and large pipe size regions, respectively, and 𝑏𝑠  and 𝑏ℓ  are the 5 

exponents for the small and large pipe size regions, respectively. A cubic spline is fit between pipe sizes 𝐷𝑐𝑜 and 𝐷𝑐𝑜+1 to 

complete the transition between small and large pipe sizes. The coefficients of this polynomial are 𝑐1, 𝑐2, 𝑐3, and 𝑐4 as seen in 

Eq. (17). These coefficients are evaluated by matching the cubic polynomial and pipe data at 𝐷𝑐𝑜  and 𝐷𝑐𝑜+1  and the first 

derivative of the polynomial with respect to 𝐷𝑖𝑗/𝐷𝑢 to 𝑎𝑠𝑏𝑠(
𝐷𝑐𝑜

𝐷𝑢
)𝑏𝑠−1 at 𝐷𝑖𝑗 = 𝐷𝑐𝑜 and to 𝑎ℓ𝑏ℓ(

𝐷𝑐𝑜+1

𝐷𝑢
)𝑏ℓ−1 at 𝐷𝑖𝑗 = 𝐷𝑐𝑜+1. An 

example of data for Polyvinyl chloride (PVC) pipe and the curvefit is shown in Fig. 3. The results of the curvefit are: 𝐷𝑐𝑜 =10 

2.067  in., 𝐷𝑐𝑜+1 = 2.469  in., 𝑎𝑠 = $1.349  m-1, 𝑏𝑠 = 1.157 , 𝑎ℓ = $1.381 m-1, 𝑏ℓ = 1.344 , 𝑐1 = $237.516  m-1, 𝑐2 =

−$316.125 m-1, 𝑐3 = $140.450 m-1, 𝑐4 = −$20.499 m-1. It is clear from inspection of Fig. 3 that a one-part cost model would 

not have produced an acceptable curve-fit to pipe-cost data. 

With the inclusion of the two-part cost model and minor loss term, Eq. (15) becomes 

0 = 

∑  𝑖𝑗,𝑖𝑛

𝐶′𝑖𝑗 𝐴𝑖𝑗

4
19 (1+𝜖𝑖𝑗)

4
19 𝑆𝑖𝑗

−
23
19 (

𝑄𝑖𝑗
7 𝜈

𝑔4𝐷𝑢
19)

1
19

1−𝐵 𝐴𝑖𝑗

4
19 𝜖𝑖𝑗

′(1+𝜖𝑖𝑗)
−
15
19 𝑆𝑖𝑗

−
4
19 (

𝑄𝑖𝑗
7 𝜈

𝑔4𝐷𝑢
19)

1
19

   

−∑  𝑖𝑗,𝑜𝑢𝑡

𝐶′𝑖𝑗 𝐴𝑖𝑗

4
19 (1+𝜖𝑖𝑗)

4
19  𝑆𝑖𝑗

−
23
19 (

𝑄𝑖𝑗
7 𝜈

𝑔4𝐷𝑢
19)

1/19

1−𝐵 𝐴𝑖𝑗

4
19 𝜖𝑖𝑗

′(1+𝜖𝑖𝑗)
−
15
19  𝑆𝑖𝑗

−
4
19 (

𝑄𝑖𝑗
7 𝜈

𝑔4𝐷𝑢
19)

1/19

 
(18) 

where 𝐵 = 0.1989 and 15 

 𝜖𝑖𝑗 =∑ 

𝑘

(
𝐿𝑒
𝐷
)
𝑘,𝑖𝑗
 
𝐷𝑖𝑗

𝐿𝑖𝑗
 (19) 
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𝜖𝑖𝑗
′ =∑ 

𝑘

(
𝐿𝑒
𝐷
)
𝑘,𝑖𝑗
 
𝐷𝑢
𝐿𝑖𝑗

 

𝐴𝑖𝑗 = {
0.318, smooth pipe
0.420, steel pipe

 

(20) 

and 𝐴 accounts for the effect of pipe roughness (smooth and commercial steel).  The term 𝐶′𝑖𝑗 is the derivative of the cost 

function per unit length with respect to 𝐷/𝐷𝑢. For the two-part cost model from above, obtain  

𝐶′𝑖𝑗 =

{
  
 

  
 𝑎𝑠𝑏𝑠(

𝐷𝑖𝑗

𝐷𝑢
)𝑏𝑠−1, 𝐷𝑖𝑗 ≤ 𝐷𝑐𝑜

𝑐2 + 2𝑐3(
𝐷𝑖𝑗

𝐷𝑢
) + 3𝑐4(

𝐷𝑖𝑗

𝐷𝑢
)2, 𝐷𝑐𝑜 < 𝐷𝑖𝑗 < 𝐷𝑐𝑜+1

𝑎ℓ𝑏ℓ(
𝐷𝑖𝑗

𝐷𝑢
)𝑏ℓ−1, 𝐷𝑖𝑗 ≥ 𝐷𝑐𝑜+1

 (21) 

Equation (18), and its simpler form Eq. (15), forms the basis for calculus-based optimization in this work and is 

applied at all internal nodes to uniquely determine hj.  Equation (18) is valid over the range of ~4000 < Re < ~300,000. 

Algorithms to solve a general set of independent, nonlinear algebraic equations using, for example, the Levenberg-Marquardt, 5 

Quasi-Newton, Newton-Raphson, or Conjugate Gradient methods are available in most commercial math packages including 

Matlab (1 Apple Hill Drive, Natick, MA USA 01760) and Mathcad (http://www.ptc.com).  We used the package Mathcad in 

the present work.  Thus, compared with an iterative solution procedure, a solution flowchart is not relevant here. 

Bhave (1978) first proposed an algorithm like Eq. (15).  However, Bhave used an iterative method to solve the design 

problem.  As such, there are several qualifications leading up to the cost minimization equation in Bhave.  These include the 10 

assumption of smallness in variation of the static pressure head between two iterations.  This allowed the terms in the cost 

function to be approximated as constants.  In the present work, the cost-function coefficient and exponent are not assumed 

constant at any node joining two sets of links; see Equation (18).  Nor do we make any assumptions on the orders of magnitude 

of the terms in our equations to simplify them.  For clarity, we re-present Eq. (15) using Bhave’s (1978) notation as 

0 =∑ 𝑄𝑖𝑗
7𝑏/19

𝑆𝑖𝑗
−(1+4𝑏/19)

−∑ 𝑄𝑗𝑘
7𝑏/19

𝑆𝑗𝑘
−(1+4𝑏/19)

 

where the ij and jk notation are shown in Fig. 4.  Index j spans all internal nodes along the distribution main.    15 

4   Backtracking Algorithm and Genetic Algorithm  

Backtracking (BT) and genetic algorithm (GA) assess candidate solutions composed of discrete diameters from a commercially 

available set. These candidates are represented by a vector of size [1, 𝑁𝐿] where each element corresponds to a network link. 

The values of the vector specify a diameter from the commercially available set that are indexed from smallest (𝑖𝐷 = 1) to 20 

largest (𝑖𝐷 = 𝑁𝐷). To reduce the computational time associated with these evaluations, the constraints imposed by the energy 
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equation and cost minimization may be more efficiently evaluated through lookup tables. With fixed 𝐿, Δ𝑧, 𝐾,  𝐿𝑒𝑏𝑦𝐷 , and 𝛼, 

the change in static pressure head Δℎ is evaluated for all 𝑁𝐷𝑥𝑁𝐿 combinations of pipe diameter and link index: 

 𝚫𝒉 = [

Δℎ11 ⋯ Δℎ1𝑁𝐿
⋮ ⋱ ⋮

Δℎ𝑁𝐷1 ⋯ Δℎ𝑁𝐷𝑁𝐿

] (22) 

While an algorithm evaluates a candidate solution, the static pressure head at each node is sequentially calculated by 

“marching” through the network. Starting with the fixed source pressure head, the algorithm finds the pressure head ℎ𝑖 for a 

given node by adding the head at the upstream node, ℎ𝑖−1 to the change in head for that link 𝑖𝐿 and the diameter 𝑖𝐷 under 5 

consideration.  Thus,  

 ℎ𝑖 = ℎ𝑖−1 + 𝚫𝒉(𝑖𝐷 , 𝑖𝐿) (23) 

Along with the hydraulic evaluation of a candidate solution, the cost of the partial candidate is found through the use of a 

lookup table 𝑪, 

 𝐂 = [

𝐶11 ⋯ 𝐶1𝑁𝐿
⋮ ⋱ ⋮

𝐶𝑁𝐷1 ⋯ 𝐶𝑁𝐷𝑁𝐿

] (24) 

where 𝑪(𝑖𝐷 , 𝑖𝐿) returns the additional cost of assigning a diameter with index 𝑖𝐷 to link 𝑖𝐿. In this way, the candidate solution’s 

hydraulic performance and cost are incorporated into the genetic algorithm and backtracking approaches. In contrast to GA, 10 

the backtracking algorithm evaluates static pressure head and cost upon consideration of each partial candidate, where GA 

calculates these values on full candidates as part of the objective function. 

4.1   BT and GA Pre-Processor 1: Maximum Available Diameter  

To increase the efficiency of BT and GA, it is advantageous to limit the number of pipe diameters in the available set, 

especially those outside of the range of the optimal solution. In particular for the BT algorithm, larger diameters can require 15 

considerable computational effort, since they tend not to violate static head requirements and require multiple-link partial 

candidates for the algorithm to reject them once their cost exceeds that of an already-found viable candidate. Therefore, a pre-

processor is used to provide a maximum diameter (𝐷𝑚𝑎𝑥) that should be considered during the optimization process. This 

procedure, which produces a conservative estimate, finds the smallest diameter at which a network with a single pipe diameter 

choice produces no nodes with a static pressure head below ℎ𝑚𝑖𝑛 , similar to the technique used by Mohan and Jinesh Babu 20 

(2009). After this diameter is found, the next-larger diameter in the set is selected as 𝐷𝑚𝑎𝑥 to allow the algorithm to select a 

larger-than-necessary diameter if this is able to save cost elsewhere. If 𝐷𝑚𝑎𝑥 appears in the optimum solution, the designer can 

elect to further increase this maximum diameter. It worth noting that Kadu et al. (2008) presents another method to further 

prune the search space with the critical path concept, where Dongre and Gupta (2011) noted the computational advantages of 

having just four diameter choices per link. This method, however, may prune the global optimum and may not produce feasible 25 

head  values at intermediate nodes, as in the case of networks with a local high point. 
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4.2   BT and GA Pre-Processor 2: Adjusted Minimum Static Pressure Head  

A second pre-processor adjusts the minimum static pressure head requirement for each internal node by considering 

the total head required at downstream nodes. It can be recognized that, without the use of a pump, the total head cannot increase 

at nodes downstream of a given node 𝑖. Furthermore, the total head must decline at a minimum grade that is determined by the 

demand volume flow rate and the largest pipe diameter available (𝐷𝑚𝑎𝑥) for selection.  This energy constraint is utilized to 5 

reduce the number of candidates to be considered by increasing the minimum static pressure head at nodes where these rules 

produce a higher minimum head than the original ℎ𝑚𝑖𝑛 . For example, nodes upstream of a local network high point can have 

their minimum static pressure head increased beyond the normal minimum, since the static pressure head must be great enough 

to ensure adequate flow to the higher-elevation downstream node. To begin this process, each node 𝑖 is initialized with a 

baseline minimum total head, 10 

 𝑡ℎ𝑚𝑖𝑛,𝑖 = 𝑧𝑖 + ℎ𝑚𝑖𝑛 (25) 

𝑡ℎ𝑚𝑖𝑛,𝑖 is thus initialized by considering only the node’s hydraulic requirements in isolation, i.e., without acknowledging the 

neighboring downstream nodes. The pre-processor then considers updating 𝑡ℎ𝑚𝑖𝑛,𝑖 by checking the following condition, which 

is false when the minimum static pressure head at downstream nodes produces further constraints on an upstream node 𝑖. Thus, 

for all nodes 𝑖 which are upstream of some node 𝑗, the following inequality can be evaluated 

𝑡ℎ𝑚𝑖𝑛,𝑖 − 𝑡ℎ𝑚𝑖𝑛,𝑗 ≥ (𝛼𝑖−𝑗 + 𝐾𝑖−𝑗 + 𝑓𝑖−𝑗 (
𝐿𝑖−𝑗

𝐷𝑖−𝑗
+ 𝐿𝑒𝑏𝑦𝐷𝑖−𝑗))

8𝑄𝑖−𝑗
2

𝜋2𝑔𝐷𝑚𝑎𝑥
4 (26) 

 15 

Also, consider that when flow rate 𝑄𝑖−𝑗 is small and 𝐷𝑚𝑎𝑥 is large, the right hand side of Eq. (26) approaches zero, representing 

the simple statement that upstream total head must always be greater than downstream total head. When the condition in Eq. 

(26) is false, the minimum total head can be updated in node 𝑖 such that the maximum diameter size in link i-j is able to meet 

the downstream node’s minimum total head, or 

𝑡ℎ𝑚𝑖𝑛,𝑖 = 𝑡ℎ𝑚𝑖𝑛,𝑗 + (𝛼𝑖−𝑗 +𝐾𝑖−𝑗 + 𝑓𝑖−𝑗 (
𝐿𝑖−𝑗

𝐷𝑖−𝑗
+ 𝐿𝑒𝑏𝑦𝐷𝑖−𝑗))

8𝑄𝑖−𝑗
2

𝜋2𝑔𝐷𝑚𝑎𝑥
4  (27) 

In this way, 𝑡ℎ𝑚𝑖𝑛,𝑖 may be updated for each node until the condition in Eq. (26) is true for all nodes 𝑖 with a downstream node 20 

𝑗 connected by a single link. 

After the values for 𝑡ℎ𝑚𝑖𝑛,𝑖  are updated, they are converted back into minimum static pressure head values by 

subtracting the elevation 𝑧𝑖 from 𝑡ℎ𝑚𝑖𝑛,𝑖. This pre-processor serves to narrow the search for viable candidate solutions by 

potentially increasing the minimum static pressure head. Since backtracking and GA consider network links in the downstream 

direction, these algorithms are otherwise blind to future downstream static pressure head requirements. This limitation is 25 

alleviated by the pre-processor, which allows these algorithms some implicit information about what local diameter choices 
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will be viable for the full network solution. Note that both pre-processors discussed will not prune the global optimum from 

the solution. 

4.3   Backtracking Algorithm (BT) 

The backtracking algorithm employs a systematic search of candidate solutions to find a global optimum. The 

algorithm works recursively to incrementally build candidate solutions while checking the candidates for hydraulic and cost 5 

acceptability. The strength of the BT is that, upon discovery of an infeasible partial candidate, all extensions of that candidate 

can be eliminated from consideration. In this way, many solutions can be pruned from the solution tree to achieve greater 

computational efficiency. 

Two backtracking methods can be found in the literature, namely those by Gessler (1985) and González-Cebollada 

et al. (2011). The algorithm proposed by Gessler, however, also proposes a pipe-grouping criteria that risks pruning the global 10 

optimum and represents a tricky optimization problem in and of itself (Raad 2011). The González-Cebollada algorithm, on the 

other hand, does not include such criteria to potentially prune a global optimum from consideration, but it halts its search after 

finding the first feasible solution. In contrast, the BT algorithm in the present study guarantees a global optimum by continuing 

its search of the solution tree even after the first solution has been found. In addition, the present BT algorithm utilizes Pre-

Processors 1 and 2 to further reduce the search space, without risk of pruning the global optimum, in advance of its search 15 

routine. Thus, out of the two reported backtracking algorithms in the literature, both do not guarantee a global optimum, while 

the BT algorithm presented in this work does. It should be noted that BT is known to scale poorly with large network sizes 

and would not be appropriate for use on large urban networks, though its appropriateness is demonstrated here for GDWNs, 

given that the test cases used in this paper representative of the sizes of GDWNs that would be expected in practice. 

Backtracking is a type of partial enumeration method, which Raad (2011) notes can drastically reduce the number of 20 

solutions to be evaluated based on two rejection criteria. The first rejection criterion is that when a candidate violates static 

pressure head constraints, all candidates with equal or lesser diameter sizes can be discarded. This condition is leveraged even 

more effectively with Pre-Processor 2 above, which can increase static pressure heads at individual nodes by anticipating the 

head requirements at surrounding nodes. The second rejection criterion is that once a feasible candidate has been found, all 

other partial candidates with a higher cost can also be discarded. The BT algorithm further extends this criterion by considering 25 

that the links yet to be considered in a partial candidate, an “extension” to the partial candidate, will cost at a minimum that of 

the entire extension being composed of the smallest available diameter. Thus, when considering whether the partial candidate 

will necessarily be more expensive than the running optimum, this minimum extension cost can be added to the partial 

candidate cost.  

The backtracking algorithm begins its search of the solution tree by considering the partial candidate with the smallest 30 

diameter size assigned to the first network link. The static pressure head and the partial candidate cost at the outlet node are 

calculated with the 𝚫𝒉 and 𝑪 lookup tables. If this partial candidate meets static pressure head and cost requirements, the 
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algorithm extends this partial candidate by assigning the smallest diameter to the downstream link. If a partial candidate 

produces a node that is rejected on the basis of static pressure head, the next largest larger diameter is chosen for the link 

upstream of the node. If no diameter satisfies the pressure head condition, the algorithm backtracks to the upstream link and 

assigns a larger diameter to the link. If a node is connected to a delivery node by a single link, the smallest feasible diameter 

for that link is found, and if no such diameter exists, the partial candidate is rejected. In this way, the algorithm continues to 5 

extend and reject candidate solutions until a full candidate satisfies the static pressure head requirements. Once this has been 

achieved, the diameter choices and cost of the network are stored as a running optimum. 

Once a working solution has been found, candidate solutions may be rejected based on cost. For each new candidate, 

cost is calculated by adding the cost of diameters that have already been assigned to the cost of assigning all downstream links 

with the smallest diameter available. If this cost exceeds the cost of the running optimum, the partial candidate is rejected. 10 

Unlike a candidate rejection based on static pressure head, a rejection based on cost does not consider siblings with larger 

diameters, since these would only further add to cost, rather, the algorithm backtracks immediately to re-assigning the upstream 

link. 

In this way, the rejection criteria based on a minimum static pressure head and cost are used to prune the solution tree 

and largely reduce the number of non-optimal candidates that need to be considered. The minimum static pressure head 15 

criterion tends to prune candidates with diameters that are too small, while the running optimal cost criterion tends to prune 

candidates of diameters that are too large. 

Another pruning technique noted by Raad (2011) is to group together adjacent links that are sized identically. This 

technique, in contrast to the former two mentioned, cannot guarantee an optimal result, and is therefore not included in the 

present study’s BT algorithm. The present study’s BT algorithm operates similarly to the method presented by González-20 

Cebollada et al. (2011), with the major difference being that the BT algorithm continues searching once it has found its first 

feasible solution and its use of Pre-Processors 1 and 2. The BT algorithm could also be used in this way to find an initial 

solution very quickly, and then continue as normal to find progressively better solutions until the end of the search space, or a 

predefined condition such as calculation time, are met. 

4.4   Modified Backtracking Algorithm (BT-NoUp) 25 

A modification to the BT algorithm was made to further improve its computational speed, although at the risk of pruning the 

global optimum from the search. This modified algorithm (BT-NoUp) rejects all candidates that feature a smaller diameter 

that is upstream of a larger diameter when an equal or smaller flow rate is present in the downstream link. Typically, optimal 

networks would not exhibit this feature, and in cases where a single source feeds into a network with constant-length links, it 

is advantageous (or equivalent) to place larger diameters upstream of smaller diameters. However, due to the discrete nature 30 

of diameter choices and link lengths, an optimization problem may, in fact, have an optimal candidate with a larger diameter 
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downstream from smaller ones. For this reason, the BT-NoUp algorithm, unlike the BT algorithm, may miss the global 

optimum at the expense of its greater computational efficiency. 

 

4.5   Genetic Algorithm (GA) 

Genetic algorithms are stochastic optimization techniques that mimic the process of natural selection, and numerous 5 

recent variations of GAs have demonstrated improved performance on WDN design (Nicklow et al. 2010). Given their 

popularity, the GA included in this study is meant to provide a point of comparison to the BT and CB algorithms when applied 

to GDWNs, and represents a straightforward GA implementation with an attempt to select appropriate operators and well-

tuned parameters. 

 When implemented in water network design, each candidate solution represents a selection of pipe diameters. The 10 

algorithm is initialized with a population of candidates of size 𝑁𝑐  that repeatedly undergoes the processes of mutation, 

crossover, and selection 

 𝑐𝑖 = [𝐷1,𝑖 𝐷2,𝑖 … 𝐷𝑁𝐿,𝑖] (28) 

where each candidate in the population 𝑐𝑖 contains 𝑁𝐿 diameters. In the present work, candidates are represented as a string of 

natural numbers, which is used over a binary representation to improve the efficiency of encoding and ensure uniqueness of 

coded strings (Vairavamoorthy and Ali 2000). The mutation operator replaces pipe diameters with a diameter from a uniform 15 

random distribution, where each link diameter has a probability of 𝑝𝑚𝑢𝑡  of mutating on each generation. The crossover operator 

randomly pairs all individuals in the population and performs a single-point crossover of the two individuals with probability 

𝑝𝑥𝑜𝑣𝑒𝑟 , where the point of crossover is chosen randomly in the string of diameters. While a two-point crossover technique was 

considered, the results were not found to have any benefit over a single-point technique, which was chosen for its greater 

simplicity. The fitness, 𝑓𝑖, of each candidate is assessed with penalties associated with the solution’s pipe cost, 𝐶𝑝𝑖𝑝𝑒,𝑖, and 20 

violations of the static pressure head requirement, 𝐶ℎ𝑦𝑑,𝑖, or 

 𝑓𝑖 =
1

𝐶𝑝𝑖𝑝𝑒,𝑖 + 𝐶ℎ𝑦𝑑,𝑖
 (29) 

The hydraulic cost is obtained for each individual by identifying nodes in which the static pressure head is less than ℎ𝑚𝑖𝑛  and 

multiplying the total amount of head violation by a hydraulic penalty coefficient, 𝑎ℎ𝑦𝑑: 

 𝐶ℎ𝑦𝑑,𝑖𝑐 = 𝑎ℎ𝑦𝑑∑(ℎ𝑚𝑖𝑛 − ℎ𝑖𝑁) | ℎ𝑖𝑁 < ℎ𝑚𝑖𝑛

𝑁𝐿

1

 (30) 

To allow for a hydraulic penalty coefficient to produce similar results in both small-scale (inexpensive) network and 

a large-scale (more expensive) cases, the hydraulic penalty coefficient is made directly proportional to the average solution 25 
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cost. With each generation, 𝑎ℎ𝑦𝑑 is updated by multiplying the normalized penalty coefficient, 𝑎ℎ𝑦𝑑,𝑛𝑜𝑟𝑚, by the average pipe 

cost of the population, 

 𝑎ℎ𝑦𝑑 = 𝑎ℎ𝑦𝑑,𝑛𝑜𝑟𝑚
∑ 𝐶𝑝𝑖𝑝𝑒,𝑖𝐶
𝑁𝑐
1

𝑁𝑐
  (31) 

The algorithm then selects candidates to be carried into the next generation through a proportionate selection method, where 

each candidate has a probability of being selected, 𝑝𝑠𝑒𝑙,𝑖 in direct proportion to its fitness relative to the sum of all fitness values 

in the population  5 

 𝑝𝑠𝑒𝑙,𝑖 =
𝑓𝑖

∑  𝑓𝑖
𝑁𝑐
1  

 (32) 

The algorithm replaces the parent generation with a generation of equal size and tends to select more fit individuals in 

successive generations. In this study, the genetic algorithm parameters used were 𝑝𝑚𝑢𝑡 = 0.02 , 𝑁𝑐 = 50 , 𝑝𝑥𝑜𝑣𝑒𝑟 = 0.5 , 

𝑁𝑔𝑒𝑛 = 100, 𝑎ℎ𝑦𝑑,𝑛𝑜𝑟𝑚 = 0.1. The first four of these parameters were chosen based on typical values presented in the literature 

and then tuned with a sensitivity analysis for the first test case. Simspon et al. (1994) present typical values for 𝑁𝑐 (30 - 200), 

𝑝𝑥𝑜𝑣𝑒𝑟  (0.7 - 1.0), 𝑝𝑚  (0.01 - 0.05), and 𝑁𝑔𝑒𝑛  (100 - 1000). The normalized hydraulic penalty coefficient, 𝑎ℎ𝑦𝑑,𝑛𝑜𝑟𝑚 , was 10 

chosen such that the GA converged on solutions which tended to satisfy the minimum static pressure constraint, but still 

allowed the population to gravitate towards smaller diameters with static pressures close to ℎ𝑚𝑖𝑛.  

5   Cases Studied 

Five cases were studied based on actual GDWN in Panama, Nicaragua, and the Philippines. Global characteristics of 

each network are presented in Table 1 and the details of each network are presented in Table 3(a)-(e). Each network is a 15 

branching type without loops. The total lengths of the networks range from less than 1 km to over 15 km. Two serial networks 

are tested to demonstrate the effect of a local high point on the algorithm solutions. Elevation plots for each case are shown in 

Fig. 5. 

The choice of ℎ𝑚𝑖𝑛  is not standardized, and should appropriately balance the risk of negative pressure in pipes and 

the increase in network cost due to the requirement of using larger diameters. The choice of ℎ𝑚𝑖𝑛  in GDWN design is typically 20 

in the range of 5 m – 20 m (Arnalich 2010; Bouman 2014; Swamee and Sharma 2008). In the present study hmin = 7 m, although 

this requirement was reduced at selected nodes at the beginning of networks where changes in elevation are still small. At the 

source node, the static pressure head is fixed at atmospheric pressure. All cases assumed minor-lossless flow, although all 

algorithms (e.g., Eq. (18) for CB-Theor) are capable of handling minor loss coefficients through the equivalent length method 

as presented above. 25 
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6   Mapping the Theoretical D to Discrete Pipe Sizes  

 The mapping between continuous diameters and the discrete nominal pipe sizes was accomplished in our solution by 

one of the following ways: 

1. For small and moderate size networks, the designer may manually adjust the pipe sizes (downward, normally one 

pipe size) starting from the first link downstream from the source and continuing along the rest of the distribution 5 

main to the end.  A nearby plot of the static pressure heads compared with the theoretical Dij from our CB approach 

(on the same Mathcad page) will highlight the acceptability or unacceptability of any change.  This exercise also 

gives the designer an understanding of the sensitivity of the design to small changes in pipe sizes.      

2. Based on the theoretical Dij from the CB approach, a composite pipeline can be created for each link. That is, the 

lengths for the two discrete pipes sizes that bound the theoretical Dij from above and below are calculated such that 10 

the pressure drop between two consecutive nodes in the distribution main matches between the composite pipeline 

and the CB approach.  This also provides discrete pipe sizes that nearly matches the CB solution in terms of cost.   

7   Results 

The current study evaluated three types of algorithms that optimize the design of gravity-driven water networks 

(GDWN). The algorithms include a calculus-based (CB) algorithm, a backtracking algorithm (BT), a modified backtracking 15 

version (BT-NoUp), and a genetic algorithm (GA). The algorithms were applied to five test cases that are based on real 

GDWNs. 

The global optimum network cost, found with BT, is shown in Table 2. The costs of solutions from all other algorithms 

are expressed as a percentage difference in cost from the global optimum cost. To visually compare the algorithm solutions, 

the hydraulic grade lines from BT, BT-NoUp, CB-Theor, and CB-Disc are presented in Fig. 5 along with the network elevation 20 

for each test case. For clarity, the hydraulic grade lines of branch links are omitted from the figure. In addition, the GA solutions 

are omitted since 100 solutions were obtained for each test case. Collectively, the hydraulic grade lines reveal a close alignment 

of the BT solution (the global optimum) with the CB-Theor solution which utilizes a continuous diameter set. Furthermore, 

the mapping scheme used to generate a CB-Disc solution is shown to increase pipe sizes in some cases far beyond the limit 

imposed by ℎ𝑚𝑖𝑛, which was set to 7 m in the present work.  25 

In practice, a GDWN must be designed with pipe diameters that are selected from a discrete, commercially available 

set. With a given number of network links, 𝑁𝐿, and a number of available diameters, 𝑁𝐷, a total of 𝑁𝐷
𝑁𝐿 candidate solutions 

exist, yet with only one global optimum (except in the case of no viable solutions or unique solutions with identical costs). For 

example, a GDWN of 20 links and 13 commercially available pipe sizes will, in principal, produce approximately 1.9𝑥1022 

candidate solutions. 30 
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BT is able to find the global optimum without needing to check all of the possible solutions by using a set of rules to 

prune infeasible and sub-optimal candidates. In this study, BT evaluated only a fraction of the candidate solutions, where the 

fraction ranged from 4𝑥10−18 to 7𝑥10−4. To further reduce the number of evaluations required to arrive at a solution, the BT 

algorithm was modified (BT-NoUp) to prune all solutions that include a smaller diameter that is upstream of a larger diameter. 

This criterion, which seems intuitive to the designer, may actually miss the global optimum due to trade-offs associated with 5 

discrete solutions. In fact, BT-NoUp missed the global optimum in cases 2 and 3, although by a small percentage increase in 

cost (2.1% and 0.35% respectively). BT-NoUp, however, finished its search in a shorter amount of time in comparison to BT. 

Using a Dell Latitude (i5 CPU at 2.50 GHz), the time to evaluate one candidate for both BT and BT-NoUp was around 0.2 ms. 

In addition to approximately 2 s of pre-processing time, the computation times for BT ranged from 0.08 s (case 1) to 79 s (case 

3), while BT-NoUp ranged from 0.06 s (case 4) to 0.3 s (case 3). The number of available diameters used in the BT, BT-NoUp, 10 

and GA runs are listed in Table 1. 

The CB algorithm, unlike the other algorithms in this work, finds a solution with theoretical diameters that are drawn 

from a continuous domain (CB-Theor). For all test cases, the costs of the CB-Theor solutions was less when compared with 

the discrete-diameter global optimum (-5.46% to -2.60%). In fact, because of the discrete pipe sizes needed for an actual 

network, the continuous model will always produce the smallest theoretical cost for the network.  The CB algorithm then maps 15 

this solution to a commercially-available discrete set (CB-Disc). The mapping process used in this study simply mapped each 

theoretical diameter to the nearest available diameter of a larger size, thus producing a solution which still satisfies static head 

requirements but with a higher associated material cost. This tended to oversize the diameters, although the CB-Disc solutions 

were always within two diameters of the BT global optimum solutions, as shown in Fig. 6. From all of the test cases combined, 

all but one (71 out of 72) of the diameter selections were within one diameter of the global optimum. More sophisticated 20 

mapping schemes, like independently adjusting D for each link in the distribution main in a step-by-step manner starting with 

the source while ensuring all pressure head constraints are satisfied, would more likely produce results identical to the global 

optimum. This was not performed in the current study. The CB-Disc solution costs were, in all cases, larger than the global 

optimum, with a percentage difference ranging from 3.86% to 22.6%. Thus, for all cases, the calculus-based algorithm bounded 

the cost of the global optima with a lower-cost CB-Theor solution and a higher-cost CB-Disc solution. This trend is a result of 25 

the additional constraints imposed by the finite set of diameter choices. If the algorithm is allowed a greater number of discrete 

diameter choices, i.e., through adding a less-common nominal diameter size to the available set, the cost of the CB-Disc 

solution would approach the CB-Theor solution. For all cases, the CB algorithm converged on a solution in 5 minutes or less. 

 GA was run on each case a total of 100 times, each run itself produced 100 generations of 50 candidates. The least-

cost candidate in that did not violate the static pressure head condition was chosen as the optimum. Because GA is a stochastic 30 

search algorithm producing different results from run-to-run, the costs of the optima from all 100 runs were averaged, with 

this averaged value presented in Table 2 as a percentage increase from the global optimum. Out of the 100 GA runs for each 

test case, nearly all runs failed to achieve the global optimum, with the exception of 8 runs of the Kiangan network. On a Dell 



20 

 

 

Latitude (i5 CPU at 2.50 GHz), GA runs took between 0.9 s (case 1) and 1.2 s (case 3), not including about 2 s of pre-processor 

time. We note that many variations of GAs have been reported in the literature and several of these would likely improve upon 

the GA results obtained in this study. Potential improvements to the GA a self-adapting penalty function (Wu and Walski 

2005), the use of elitism to preserve the best solutions (Kadu et al. 2008), and a reduction in the search space (Kadu et al. 

2008). Other reported improvements, including the systematic optimization of operator parameters (Reed et al. 2000) and 5 

scaling of the fitness function to magnify the rewards towards slightly fitter candidates (Dandy et al. 1996) were attempted in 

a less systematic way (Ie. a parameter tuning study and three attempts at scaling the fitness function with an increasing 

exponent), but these did not result in a noticeable on performance. However, it is possible that if these techniques were followed 

systematically in full, the GA performance may have been improved. Still, the GA algorithm presented has undergone 

reasonable attempts to adapt its design and parameters for real-world GDWN cases, and therefore presents a useful point of 10 

comparison to the BT and CB algorithms. 

8   Conclusions 

Algorithms to optimize the cost of branching gravity-driven water networks are evaluated on five test cases from real 

networks in the Philippines, Nicaragua, and Panama. A calculus-based algorithm produced a solution composed of theoretical 

diameters from a continuous set (CB-Theor), which are then mapped onto discrete commercially available diameters (CB-15 

Disc). Backtracking (BT), a recursive algorithm, systematically searches discrete candidate solutions and is guaranteed to find 

the global optimum by following rules that prune only higher-cost or hydraulically infeasible candidates. The BT algorithm 

was modified (BT-NoUp) to improve computational speed by also rejecting all candidates that included a small diameter 

directly upstream of a larger diameter. This criterion allowed BT-NoUp to prune more candidate solutions but allowed for the 

possibility of missing the global optimum. The third type of algorithm evaluated was a genetic algorithm (GA) that used single-20 

point crossover and proportionate selection 

BT was able to find the global optimum in all test cases with relatively little computational effort, and could be applied 

to other GDWNs composed of a similar number of links. In addition, while BT-NoUp completed its search in less time than 

BT, the time required to complete BT would not be burdensome on a designer and therefore BT-NoUp did not produce a 

compelling relative advantage over BT. BT, however, could become prohibitively time-consuming when dealing with 25 

networks with significantly more links, as would be the case with large urban networks. While the test cases represent the 

range of GDWN sizes encountered in the authors’ experience, future work would be needed to verify the suitability of the BT 

and BT-NoUp algorithms on other large GDWNs. The calculus-based algorithm produced consistently good results for the 

networks tested, although a more robust mapping scheme from theoretical diameters to discrete diameters would further 

improve on these results as discussed above. In potential future work, the CB-Theor solutions could be used to prune the BT 30 

search space, similar to Kadu et al. (2008), by only including the two diameters above and below the CB-Theor diameters, 
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producing four diameter choices per link. The calculus-based methodology provides an additional benefit to the designer by 

explicitly revealing the sensitivities to cost for a design. The calculus-based algorithm requires greater computational effort 

than backtracking for smaller networks, however, this effort scales more linearly with the number of network links, while 

backtracking scales exponentially. Furthermore, backtracking’s computational time is sensitive to the number of available 

diameters. Still, when applied to GDWNs with a similar number of links to the test cases, backtracking can quickly find a 5 

global optimum. In addition, because it is guaranteed to find the global optimum, it can be useful for benchmarking the 

performance of other algorithms which scale better with more network links. While the genetic algorithm produced solutions 

with decent closeness to the global optimum, run-to-run results vary due to the stochastic nature of the algorithm. Overall, the 

genetic algorithm as implemented did not produce results which deemed it compelling over deterministic methods as applied 

to GDWNs.  However, for more complex networks and problem formulations, a genetic algorithm may be more advantageous. 10 

In this case, the present study’s GA could be greatly improved on through many improvements reported in the literature 

(Nicklow et al. 2010). 

For all test cases, the calculus-based algorithm’s theoretical diameter solutions (CB-Theor) produced a lower cost 

than the discrete-domain global optimum. This result is made possible because of it is not constrained to a discrete set of 

diameters. As such, the CB-Theor results represent a lower-bound on the optimum solution within the problem formulation, 15 

which could be approached with a finer selection of pipe diameters. 
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Table 1: Characteristics of Test Cases. 

Test Case Type 

Number of 

Diameter 

Choices 

Number of 

Links 

Qtot  

( L s-1 ) 

Ltot  

( km ) 

 1.  Kiagan, Philippines Branching 8 9 4.37 0.82 

 2.  Los Modulus, Nicaragua Serial 4 13 0.39 1.24 

 3.  Cañazas, Panama Branching 10 23 6.29 15.2 

 4.  San Miguel, Nicaragua Serial 9 10 0.40 1.18 

 5.  El Guabo, Nicaragua Branching 12 17 17.7 4.71 
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Table 2: Solution Costs. 

Test Case 
Global Optimum Percentage cost increase from global optimum 

BT BT-NoUp CB-Theor CB-Disc GA 

1.  Kiagan, Philippines $     2,331 0 -3.16 11.3 4.80 

2.  Los Modulos, Nicaragua $     1,441 2.10 -2.60 22.6 12.1 

3.  Cañazas, Panama $   72,190 0.35 -5.46 17.0 20.7 

4.  San Miguel, Nicaragua $     5,418 0 -4.54 3.86 6.20 

5.  El Guabo, Nicaragua $   61,445 0 -3.16 20.2 13.3 
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Table 3(a): Case #1 Kiangan network properties, diameter (D) results (inch nominal sizes, with CB-Theor in inches), and nodal h. 

            

N
et

w
o

rk
 Link 1-2 2-3 3-4 4-5 5-6 2-7 3-8 4-9 5-10  

Length (m) 76 113 19 54 75 80 99 170 135  

Q (L/s) 4.37 3.68 2.94 1.46 0.69 0.69 0.74 1.48 0.77  

Δz (m) 14.0 1.0 0.0 0.0 -1.0 0.0 -2.0 3.0 2.0  

            

D
 s

o
lu

ti
o
n
s BT 3 2-½ 2 1-½ 1-½ 1 1-¼ 1-½ 1-¼  

BT-NoUp 3 2-½ 2 1-½ 1-½ 1 1-¼ 1-½ 1-¼  

CB-Theor 2.751 2.562 2.141 1.830 1.356 1.062 1.376 1.584 1.128  

CB-Disc 3 3 2-½ 2 1-¼ 1-¼ 1-¼ 1-½ 1-¼  

            

h
 (

m
) 

Node 1 2 3 4 5 6 7 8 9 10 

BT 0 13.09 11.43 10.72 8.81 7.10 7.27 7.21 7.57 7.58 

BT-NoUp 0 13.09 11.43 10.72 8.81 7.10 7.27 7.21 7.57 7.58 

CB-Theor 0 12.48 11.24 10.65 9.61 7.00 6.99 7.00 7.00 3.19 

CB-Disc 0 13.09 13.15 12.85 12.27 9.78 11.51 8.94 9.70 11.04 
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Table 3(b): Case #2 Los Modulos network properties, diameter (D) results (inch nominal sizes, with CB-Theor in inches), and nodal h. 

                

N
et

w
o

rk
 Link 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14  

Length (m) 60 41 108 46 134 153 79 157 90 32 102 120 117  

Q (L/s) 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39  

Δz (m) 11.2 -0.5 32.8 -3.7 36.6 -2.3 15.7 -6.8 7.3 -7.4 4.5 -1.2 8.4  

                

D
 s

o
lu

ti
o
n
s BT 1 1 ¾ ¾ ¾ ¾ 1 ¾ 1 1 ¾ ¾ ¾  

BT-NoUp 1 1 1 1 1 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾  

CB-Theor 0.987 0.984 0.849 0.849 0.849 0.849 0.849 0.849 0.849 0.849 0.849 0.849 0.849  

CB-Disc 1 1 1 1 1 1 1 1 1 1 1 1 1  

                

h
 (

m
) 

Node 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

BT 0 9.55 7.94 31.59 24.00 49.25 33.99 47.55 27.45 32.32 24.05 19.91 8.55 7.04 

BT-NoUp 0 9.55 7.94 37.82 32.88 65.85 50.59 59.60 39.50 39.18 29.07 24.93 13.56 12.05 

CB-Theor 0 9.00 7.00 31.86 24.78 51.53 37.98 47.87 29.53 30.21 20.46 17.46 7.44 7.23 

CB-Disc 0 9.55 7.94 37.82 32.88 65.85 59.41 72.98 61.93 66.80 58.53 60.27 55.83 61.06 
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Table 3(c): Case #3 Cañazas network properties, diameter (D) results (inch nominal sizes, with CB-Theor in inches), and nodal h. 

                          

N
et

w
o
rk

 Link 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-13 2-14 3-15 4-16 5-17 6-18 7-19 8-20 9-21 10-22 11-23 12-24  

Length (m) 646 275 957 509 1102 291 1764 1256 2320 1580 2170 1217 160 100 1250 110 570 180 1400 50 400 260 100  

Q (L/s) 6.29 5.49 5.39 5.34 5.14 2.84 2.74 2.49 2.39 0.69 0.39 0.20 0.80 0.10 0.05 0.20 2.30 0.10 0.25 0.10 1.70 0.30 0.19  

Δz (m) 25.0 38.9 11.9 42.1 -22.9 32.3 -29.9 40.8 -3.0 -14.7 34.1 -7.6 -5.0 20.0 -15.0 2.0 -12.0 14.0 -6.0 5.0 -1.0 -13.0 9.0  

                          

D
 s

o
lu

ti
o
n
s BT 4 3 3 4 3 3 3 2-½ 2-½ 2 1-¼ 1 1-¼ ½ ½ ½ 2 ½ 1 ½ 1-½ 1-¼ ½  

BT-NoUp 4 4 4 4 3 3 2-½ 2-½ 2-½ 2 1-¼ 1 1-¼ ½ ½ ½ 1-½ ½ 1 ½ 1-½ 1-½ ½  

CB-Theor 3.530 3.531 3.333 3.307 3.270 2.727 2.698 2.579 2.548 1.862 1.227 1.011 1.283 0.325 0.508 0.404 1.678 0.343 0.963 0.281 1.405 1.401 0.488  

CB-Disc 4 4 4 4 4 3 3 3 3 2 1-¼ 1 1-¼ ½ ½ ½ 2 ½ 1 ½ 1-½ 1-½ ½  

                          

h
 (

m
) 

Node 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

BT 0 21.1 55.4 51.5 91.3 51.7 82.5 43.9 69.8 41.4 22.1 40.0 21.7 12.1 72.2 24.3 82.2 26.1 90.8 20.1 73.3 21.9 7.81 39.7 

BT-NoUp 0 21.1 58.8 66.4 106 66.6 97.4 42.8 68.8 40.4 21.0 39.0 20.7 12.1 75.6 39.2 97.1 9.5 106 19.0 72.2 20.9 7.43 38.7 

CB-Theor 0 17.8 54.3 55.6 91.9 56.7 86.3 40.3 69.0 44.1 21.9 27.9 7.64 6.99 8.02 7.70 7.98 7.72 7.79 7.70 8.18 7.68 7.69 7.71 

CB-Disc 0 21.1 58.8 66.4 106 78.8 110 70.9 106 94.4 75.1 93.0 74.7 12.1 75.6 39.2 97.1 53.1 118 47.1 110 74.9 61.4 92.7 
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Table 3(d): Case #4 San Miguel network properties, diameter (D) results (inch nominal sizes, with CB-Theor in inches), and nodal h. 

             

N
et

w
o
rk

 Link 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11  

Length (m) 189 168 139 81 32 92 225 115 52.3 85  

Q (L/s) 3.60 3.60 3.60 3.60 3.60 3.60 3.60 3.60 3.60 3.60  

Δz (m) 27.4 10.7 -6.4 6.1 -5.2 -18.6 33.2 58.2 -11.3 32.9  

             

D
 s

o
lu

ti
o
n
s BT 3 3 3 3 3 2-½ 2 1-¼ 1-¼ 1-¼  

BT-NoUp 3 3 3 3 3 2-½ 2 1-¼ 1-¼ 1-¼  

CB-Theor 2.939 2.929 2.929 2.929 2.929 2.929 1.671 1.462 1.462 1.368  

CB-Disc 3 3 3 3 3 3 2 1-½ 1-½ 1-¼  

             
h
 (

m
) 

Node 1 2 3 4 5 6 7 8 9 10 11 

BT 0 25.88 35.20 27.68 33.13 27.70 7.02 28.27 43.86 13.19 14.60 

BT-NoUp 0 25.88 35.20 27.68 33.13 27.70 7.02 28.27 43.86 13.19 14.60 

CB-Theor 0 25.53 34.51 26.72 32.01 26.51 7.00 6.99 32.93 6.96 7.02 

CB-Disc 0 25.88 35.20 27.68 33.13 27.70 8.37 29.62 67.54 47.02 48.43 
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Table 3(e): Case #5 El Guabo network properties, diameter (D) results (inch nominal sizes, with CB-Theor in inches), and nodal h. 

                    

N
et

w
o

rk
 Link 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 2-11 3-12 4-13 5-14 6-15 7-16 8-17 9-18  

Length (m) 383 486 1030 600 150 400 187 450 227 230 240 110 270 130 130 260 110  

Q (L/s) 17.72 14.68 12.76 11.96 10.04 7.72 6.60 3.12 1.20 3.04 1.92 0.80 1.92 2.32 1.12 3.48 1.92  

Δz (m) 10.9 10.0 -5.6 3.2 -2.6 5.7 -4.1 4.2 -3.1 2.0 2.5 -1.2 2.0 -1.1 0.0 1.0 2.0  

                    
D

 s
o
lu

ti
o
n
s BT 8 6 6 6 6 5 5 4 2 2-½ 1-½ 1-½ 2 3 1-¼ 3 1-½  

BT-NoUp 8 6 6 6 6 5 5 4 2 2-½ 1-½ 1-½ 2 3 1-¼ 3 1-½  

CB-Theor 6.875 6.408 6.144 6.008 5.691 4.800 4.576 3.494 2.649 2.364 1.608 1.529 1.932 3.250 1.395 3.076 1.647  

CB-Disc 8 8 8 6 6 5 5 4 3 2-½ 1-½ 1-½ 2 4 1-½ 4 2  

                    

h
 (

m
) 

Node 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

BT 0 10.34 18.50 9.91 11.53 8.61 13.16 8.65 12.11 7.25 8.48 7.23 7.35 8.84 7.03 7.16 7.68 7.80 

BT-NoUp 0 10.34 18.50 9.91 11.53 8.61 13.16 8.65 12.11 7.25 8.48 7.23 7.35 8.84 7.03 7.16 7.68 7.80 

CB-Theor 0 9.76 18.35 9.93 11.49 8.46 12.70 7.94 10.67 7.00 7.00 7.00 7.00 7.01 7.00 7.00 7.00 7.01 

CB-Disc 0 10.34 19.85 13.47 15.09 12.17 16.72 12.21 15.67 12.27 8.48 8.58 10.91 12.40 10.94 13.84 12.67 15.76 
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Figure 1:  Element schematic of a GDWN. 
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Figure 2:  Three-pipe branch network. 
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Figure 3:  PVC pipe cost from 2011 data. 
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Figure 4. Bhave (1978) index notation at an internal node, j.  
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Figure 5: Network elevation (z) and hydraulic grade lines (HGLs) of algorithm solution for main distribution links. 
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Figure 6: Diameter sizes of calculus-based (CB-Disc) solutions above the global optimum solutions. 
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