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1. The manuscript presents algorithms for optimization of branching gravity-driven water networks,
which is interesting. The subject addressed is within the scope of the journal.

2. However, the manuscript, in its present form, contains several weaknesses. Appropriate revisions to
the following points should be undertaken in order to justify recommendation for publication.

2. Thank you for reviewing our paper and providing detailed feedback. Please see our responses to each
of your comments below.

3. Full names should be shown for all abbreviations in their first occurrence in texts. For example, PVC in
p.1, Dinp.3, WDN in p.4, HGL in p.12, etc.

3. We have updated our paper to include full names next to the first instances of all abbreviations in the
text.

4. For readers to quickly catch your contribution, it would be better to highlight major difficulties and
challenges, and your original achievements to overcome them, in a clearer way in abstract and
introduction.

4. In response to your feedback, we have substantially revised the abstract and introduction sections to
make the contribution and scope of the paper more clear. Please refer to those sections.

5. It is mentioned in p.1 that three cost-minimization algorithms are adopted for the design of
moderate-scale branching Gravity-Driven Water Networks. What are the other feasible alternatives?
What are the advantages of adopting these particular algorithms over others in this case? How will this
affect the results? More details should be furnished.

Author’s Response:

5. The problem considered in this paper is that of selecting a single pipe diameter for each link in a water
network to optimize the material cost. This problem has three major categories of methods that are
applicable to it: enumeration methods (including both complete enumeration and partial enumeration),
nonlinear programming methods, and metaheuristic methods. For each of these categories we have
proposed and tested one representative algorithm: backtracking (partial enumeration), the Jones
calculus-based algorithm (nonlinear programming), and a genetic algorithm (metaheuristic). While there
are many other types of metaheuristic algorithms (simulated annealing, Tabu search, cellular automata,
ant colony optimization, and particle swarm optimization), the genetic algorithm is the most
representative of these and is also the most commonly used (Zhao et al. 2016).

Note that we have categorized the backtracking algorithm as a partial enumeration method and not a
heuristic algorithm. The backtracking algorithm, like heuristic methods, follows a set of deterministic
rules to find better solutions, however, those rules are strictly formulated to find cost-optimal solutions
and does so without missing the global optimum. In contrast, heuristic algorithms follow rules which



achieve some proxy of an optimum solution but do not guarantee the global optimum. One example of
a heuristic algorithm comes from Suribabu (2012), whose algorithm uses the uniformity of a solution’s
flow velocity as a proxy for its cost-optimality. As such, the Suribabu algorithm increments a pipe
diameter when its flow velocity is high and decrements the diameter when its flow velocity is low, in an
attempt to approach more optimal solutions. It was not necessary to include such a heuristic algorithm
for comparison in this paper, since the Backtracking algorithm presented follows a more strictly
formulated set of rules that do guarantee a cost optimum.

We note that other methods that can be applied to water network design do not address the problem of
focus in our paper. For example, linear programming methods provide split-pipe solutions for each link,
while the problem addressed here calls for each link to have a single-diameter solution. Multi-objective
optimization methods, which typically involve new implementations of metaheuristic methods, are also
outside the scope of (single-objective) cost optimization, although it should be noted that cost-
optimization algorithms, such as the ones used in this paper, can be used within multi-objective
implementations. In addition, decomposition methods, where networks are broken down into smaller
sub-networks, can use any of the methods listed above, and are therefore not an exclusive method
category. Given the appropriateness of the presented algorithms to the network sizes of gravity water
networks, decomposition was not necessary.

We have added a more thorough description to our introduction section that gives clearer context to
the selection of these algorithms, highlighting the category of method to which they belong and the key
features that make them distinct from one another.

Suribabu, C. R.: Heuristic-based pipe dimensioning model for water distribution networks, J. Pipeline
Syst. Eng. Pract., 3(4), 115-124, doi:10.1061/(ASCE)PS.1949-1204.0000104, 2012.

Zhao, W., Beach, T., and Rezgui, Y.: Optimization of Potable Water Distribution and Wastewater
Collection Networks: A Systematic Review and Future Research Directions, IEEE Transactions on
Systems, Man, and Cybernetics: Systems, 46 (5), 659-681, doi:10.1109/TSMC.2015.2461188, 2016.

6. It is mentioned in p.4 that five actual GDWNs installed in Panama, Nicaragua, and the Philippines are
adopted as test cases. What are the other feasible alternatives? What are the advantages of adopting
these particular test cases over others in this case? How will this affect the results? More details should
be furnished.

Author’s Response:

6. This work was prompted by our GDWN design work in Panama, Nicaragua, and the Philippines. Thus,
these networks are most pertinent to our interests and are networks for which we have detailed data.
Despite an extensive review of the literature, we did not uncover any common test cases for GDWNSs,
nor many papers focusing on GDWN design, which is likely due to their use in mostly developing
countries. While each network is a branching type without loops, the total lengths range to over 15 km.
This is considered a very large network in the scale of the present work. In fact, this is the longest
GDWN in Central and South America. Two serial networks were tested to demonstrate the effect of a
local high point on the algorithm solutions.

7. It is mentioned in p.5 that “. . .The pressure upper bound is not incorporated into the optimization
process. ...” Why this is not incorporated? More justifications should be furnished on this.



Author’s Response:

7. Itis correct that the pressure upper bound is not incorporated into the optimization process. Worst-
case pressure conditions occur under hydrostatic conditions, which are directly related to the maximum
elevation change in the network and where no flow occurs. Therefore, before the optimization process
is undertaken, the selections of appropriate pressure ratings for the pipe and, if needed, break-pressure
tanks are left to the correct judgment of the designer under no-flow conditions. In addition, precautions
against water hammer are left to the designer since the design process presented in the paper
specifically addresses network cost minimization and not this aspect of the hydraulic design.

8. It is mentioned in p.5 that “. . .precautions against water hammer are left to the designer. ..” Why this
is left to the designer? More justifications should be furnished on this.

Author’s Response:
8. See response to 7.

9. It is mentioned in p.7 that a two-part model is adopted in this study. What are the other feasible
alternatives? What are the advantages of adopting this particular model over others in this case? How
will this affect the results? More details should be furnished.

Author’s Response:

9. Both single-part and two-part pipe cost models are considered in the paper, which result in two
different equations for network cost minimization, Equations (15) and (18) respectively. The single-part
cost model is simpler than the two-part model and results in the simpler Equation (15) compared with
Equation (18). However, as Figure 3 in the paper shows, actual pipe-cost data are more accurately fit to
the two-part cost model. There appears to not be the need for more elaborate pipe cost models, nor
has one been proposed in the literature as far as the authors are aware.

10. It is mentioned in p.9 that a cubic spline is adopted to complete the transition between small and
large pipe sizes. What are the other feasible alternatives? What are the advantages of adopting this
particular function over others in this case? How will this affect the results? More details should be
furnished.

Author’s Response:

10. As seen in Equation (21) in the paper, a first derivative of the pipe cost w.r.t. pipe diameter is needed
in the network cost minimization Equation (18), which is based on the two-part pipe cost model. Thus, a
smooth, continuous function is fit between the small-D and large-D parts of the cost model to ensure
the first derivative is well behaved. The cubic polynomial is the simplest one that ensures continuous
function and first-derivative behavior between the small-D and large-D parts of the cost model.

11. It is mentioned in p.13 that two rejection criteria are adopted to reduce the number of solutions to
be evaluated. What are the other feasible alternatives? What are the advantages of adopting these
particular criteria over others in this case? How will this affect the results? More details should be
furnished.



Author’s Response:

11. In the BT algorithm, the selection of a diameter size results in a corresponding pressure head at a
downstream node and a corresponding cost, both of which serve as the basis of the two rejection
criteria used. Because the direct relationships between diameter and cost, and between diameter and
pressure head, span the entire range of diameters, criteria to prune certain diameter choices can be
safely proposed that never skip a global optimum. It can be noticed that the two criteria prune diameter
solutions at the competing ends of the range of diameters, with the cost criteria pruning out larger
diameters, which add more cost, and the head criteria pruning out smaller diameters, which contribute
to greater head loss. These two criteria for enumeration methods have been the only ones in the
literature that do not risk pruning a global optimum (Raad 2011, Gonzalez-Cebollada et al. 2011). Other
criteria, such as rejecting partial candidates that include a diameter that is larger than an upstream
diameter, risk skipping the global optimum and were therefore not included in the BT algorithm.
Instead, these were instead included in the modified algorithm, BT-NoUp, to compare the resulting
effect on computation time and the cost of the solution.

These rejection criteria are further strengthened with the use of Pre-processor 1 (section 4.1) to adjust
the maximum available diameter and Pre-processor 2 (section 4.2) to adjust the minimum static
pressure head at each node (section 4.2), again without risk of pruning the global optimum and without
the need to update any such calculations during the search process itself. To our knowledge, is the first
implementation of Pre-processor 1 in enumeration methods and the first implementation of Pre-
processor 2 in any method.

12. It is mentioned in p.14 that the method presented by Gonzalez-Cebollada et al. (2011) is adopted as
the BT algorithm. What are the other feasible alternatives? What are the advantages of adopting this
particular method over others in this case? How will this affect the results? More details should be
furnished.

Author’s Response:

12. The use of backtracking for water network design has not been widely used, and only two other
backtracking methods can be found in the literature, those by Gessler (1985) and Gonzélez-Cebollada et
al. (2011). However, the algorithm proposed by Gessler, unlike the present work’s BT algorithm, includes
a pipe-grouping criteria set that risks pruning the global optimum, and is therefore a less appropriate
comparator to the present study’s BT algorithm. The Gonzalez-Cebollada algorithm, on the other hand,
does not include such a criterion to potentially prune a global optimum from consideration, however, it
halts its search after finding the first feasible solution. Thus, out of the two reported backtracking
algorithms in the literature, both do not guarantee a global optimum, while the BT algorithm presented
in this work does. The trade-off of this expanded search is an increase in computation time, however,
the BT algorithm was able to execute in a satisfactory timeframe for all cases (with a maximum runtime
of 79 seconds). More clarifications have been added to the paper to further clarify BT’s comparison to
the Gonzélez-Cebollada backtracking algorithm.

Gessler J: Pipe network optimisation by enumeration, Proceedings of the Specialty Conference on
Computer Applications in Water Resources, American Society of Civil Engineers, New York, 1985.



Gonzdlez-Cebollada, C., Macarulla, B., and Sallan, D.: Recursive Design of Pressurized Branched Irrigation
Networks, J. Irrig. Drain Eng., 137(6), 375-382, doi:10.1061/(ASCE)IR.1943-4774.0000308, 2011.

13. It is mentioned in p.15 that a single-point crossover is adopted in this study. What are the other
feasible alternatives? What are the advantages of adopting this particular crossover method over others
in this case? How will this affect the results? More details should be furnished.

Author’s Response:

13. The crossover operation in a genetic algorithm has a number of variations including: single-point,
two-point, uniform, multi-parent single point, multi-parent two-point, multi-parent uniform, universal
single-point, universal two-point, and universal parent uniform. Unlike a single-point crossover, in which
two individuals exchange data to the right (or left) of a randomly selected point in their chromosome, a
two-point crossover includes two such random points that distinguish the points at which data is
exchanged. The uniform crossover is where each link’s diameter has an equally likely probability of being
exchanged with the other parent. The references to multi-parent techniques involve schemes where
more than two parents are used to exchange information. Finally, references to universal parents means
that, at low probabilities, one of the parent chromosomes is the set of all commercial diameters. This
serves to add in more variation to the population, but effectively accomplishes the same thing as the
mutation operator. There is no standard technique used in the literature, though single-point crossover
has a long history of use in genetic algorithms for water distribution network design (Simpson et al.
1994, Krapivka and Ostfeld 2009, Dandy et al. 1996). While we did experiment with a two-point
crossover design, we did not find the results to have any benefit over a single-point design, and decided
on the single-point technique for its greater simplicity.

Dandy, G. C., Simpson, A. R., and Murphy, L. J.: An improved genetic algorithm for pipe network
optimization, Water Resour. Res., 32(2), 449-458, d0i:10.1029/95WR02917, 1996.

Krapivka, A., and Ostfeld, A.: Coupled genetic algorithm—Linear programming scheme for least cost
design of water distribution systems, J. Water Resour. Plann. Manage., 135(4), 298-302,
doi:10.1061/(ASCE)0733-9496(2009)135:4(298), 2009.

Simpson, A. R., G. C. Dandy, and Murphy, L. J.: Genetic Algorithms Compared to Other Techniques for
Pipe Optimization, J. Water Resour. Plann. Manage., 120(4), 423—-443, doi:10.1061/(ASCE)0733-
9496(1994)120:4(423), 1994.

14. It is mentioned in p.15 that a pinwheel lottery (with replacement) is adopted to select candidates to
be carried into the next generation. What are the other feasible alternatives? What are the advantages
of adopting this particular approach over others in this case? How will this affect the results? More
details should be furnished.

Author’s Response:

14. The technique used to select candidate solutions is more commonly known as a proportionate
selection method, and the paper has been updated to include this term. With this technique, the fitness
of each solution directly relates to its probability of being selected for the next generation. The
proportionate selection method has a long history of use in genetic algorithms for water distribution
network design (Goldberg 1989, Simpson et al. 1994). One feature of this selection process is that less-



fit candidates have ability to be selected into successive rounds, albeit at a lower probability than fitter
candidates. This ability to preserve less-fit candidates in the population increases genetic diversity,
permitting genetic algorithms to avoid convergence into a local optimum. Alternates to proportionate
selection include tournament selection, elitism, and stochastic universal sampling, which have been
shown improved performance in genetic algorithms in certain cases of water network problems.
Tournament selection pairs off small groups of candidates and selects the fittest candidate for
subsequent crossover and has the added benefit of being less prone to genetic drift. Stochastic universal
sampling has the same effect as proportionate selection, although it does so by generating only a single
random number, thus saving computational time. Because the genetic algorithm runtimes were
acceptable, within a few seconds each, there was no need to use more efficient selection techniques.
Based on the literature, the proportionate selection technique is appropriate for use for this problem
formulation.

Simpson, A. R., G. C. Dandy, and Murphy, L. J.: Genetic Algorithms Compared to Other Techniques for
Pipe Optimization, J. Water Resour. Plann. Manage., 120(4), 423—-443, doi:10.1061/(ASCE)0733-
9496(1994)120:4(423), 1994.

Goldberg D.: Genetic algorithms in search, optimisation, and machine learning, Addison Wesley, San
Francisco, 1989.

15. It is mentioned in p.18 that “.. .and several of these would likely improve upon the GA results
obtained in this study . . .” Why they are not performed in this study? More justifications should be
furnished on this.

Author’s Response:

15. The purpose of the present study is to offer a comparison of the major methods available for gravity-
driven water network optimization in order to help inform designers of GDWNs on what to expect from
each algorithm, where one of those is a genetic algorithm (GA). The computational research being done
with genetic algorithms, and more broadly metaheuristic methods, is vast and presently developing. The
number of variations available to implement in a genetic algorithm are too large to properly list in the
present work. A good review of these developments in the context of water resources is given by
Nicklow et al. (2010). Notably, while a theoretical basis for why genetic algorithms work has been
proposed, the performance of a GA variant cannot be predicted on a given problem set, thus requiring
experimental characterization (i.e., test runs on a range of cases). Even so, despite certain techniques
showing benefits on water network test cases, it is not possible to generalize these findings to all water
network cases.

The GA included in this paper is meant to present a benchmark for the results that could be
expected when designing a GA with a reasonable amount of effort put into finding optimal parameters
and the selection of proper operator schemes (selection, mutation, and crossover). It was not our
intention with this paper to find the optimal GA scheme to implement for GDWNs. In fact, one
improvement mentioned in the paper (scaling of the fitness function (Dandy et al. 1996)) was attempted
in the present work. However, upon the trial of a few scaling schemes (Eg. a fitness exponent
transitioning from 1 on the first generation to 2 on the last generation), no benefit was observed.
Nonetheless, it is possible that a more thorough search of different scaling exponents may have
improved the results, thus, this technique was not given a full consideration. Another improvement



mentioned, the systematic optimization of parameters (Reed et al. 2000), requires quite an extensive
process to find optimal search parameters. A less intensive and systematic version of this was
performed, as mentioned in the parameter tuning process, although it is possible that a more systematic
and thorough search would have improved the GA parameters selected.

Seen in a practical context, such advanced GA techniques are not in line with GDWN design
practice. A GDWN designer typically would rarely would have access to commercial water network
design software, and would typically not have much time to dedicate to optimization. Instead, designers
will often select pipe diameters manually by marching along a distribution main and selecting successive
pipe diameters, each time checking for hydraulic acceptability. With this as common practice, the use of
any feasible optimization technique represents a substantial improvement. In our experience, and as
noted above, a designer rarely has access to commercial water network design software, nor would they
have the capability to implement more advanced techniques in the literature. As such, the GA
represented in the paper represents a feasible performance benchmark with which to compare with the
other algorithms, which are already easier to implement even without more advanced GA techniques.

Dandy, G. C., Simpson, A. R., and Murphy, L. J.: An improved genetic algorithm for pipe network
optimization, Water Resour. Res., 32(2), 449-458, d0i:10.1029/95WR02917, 1996.

Nicklow, J., Reed, P., Savic, D., Dessalegne, T., Harrell, L., Chan-Hilton, A., Karamouz, M., Minsker, B.,
Ostfeld, A., Singh, A., Zechman, E., and ASCE Task Committee on Evolutionary Computation in
Environmental and Water Resources Engineering: State of the Art for Genetic Algorithms and
Beyond in Water Resources Planning and Management, J. Water Resour. Plann. Manage., 136(4),
412-432, doi:10.1061/(ASCE)WR.1943-5452.0000053, 2010.

Reed, P., Minsker, B., and Goldberg, D. E.: Designing a competent simple genetic algorithm for search
and optimization, Water Resour. Res., 36(12), 3757-3761, doi:10.1029/2000WR900231, 2000.

16. Some key parameters are not mentioned. The rationale on the choice of the particular set of
parameters should be explained with more details. Have the authors experimented with other sets of
values? What are the sensitivities of these parameters on the results?

Author’s Response:

16. All parameters chosen for the GA algorithm are listed in Section 4.5. These include p;,,,: = 0.02,

N¢ = 50, pxover = 0.5, Ngen = 100, @pygnorm = 0.1. The first four of these parameters were originally
chosen based on typical values presented in the literature and then tuned with a parameter sensitivity
study for the first test case. Simspon et al. (1994) present typical values for N, (30 - 200), Pyover (0.7 -
1.0), pym (0.01 - 0.05), and Nyep, (100 - 1000). During the parameter tuning process, each parameter was
sequentially varied until a decrease or increase in no parameter resulted in significantly lower-cost
results, as determined by an average of 100 runs of each. The last parameter (apyqnorm) was found
through a parameter sensitivity study and then checked to be reasonably in line with literature-based
hydraulic penalty coefficients, which normalized based on their respective network’s optimum price. A
value for the normalized hydraulic penalty coefficient, apyq norm, Was chosen such that the GA
converged on solutions that tended to satisfy the minimum static pressure constraint, but still allowed
the population to gravitate towards smaller diameters with static pressures close to h,,;,. The least
sensitive parameters were pyoper, Nc, and Ngep, = 100, such that even a 50% change in their values



resulted in less than 1-5% change in average solution cost, while apy g norm Was moderately sensitive to
changes and p;,,+ Was the most sensitive, thus requiring finer-tuning in increments of 0.005, where the
best performance was achieved at p,,,,; = 0.020. As further validation of the value chosen for py,:, @
generally acceptable standard for GA performance occurs when p,,,,,; = 1/Nc (Reed 2000).

Reed, P., Minsker, B., and Goldberg, D. E.: Designing a competent simple genetic algorithm for search
and optimization, Water Resour. Res., 36(12), 3757-3761, doi:10.1029/2000WR900231, 2000.

17. Some assumptions are stated in various sections. Justifications should be provided on these
assumptions. Evaluation on how they will affect the results should be made.

Author’s Response:

17. The main assumptions used in the problem formulation will be discussed below: turbulent flow,
smooth pipe, and minimum static pressure head. The assumption of turbulent flow is reasonable for all
practical potable water distribution networks, and is a traditionally-held assumption in the literature for
this scale of water networks. The validity of this assumption is also verifiable post-analysis, as is
mentioned in page 6 of our paper. It would not be appropriate to speculate on how the results would be
different if the flow were laminar or transitional, since such cases do not normally occur in practice. The
assumption of smooth pipe is consistent with conditions that exist in the field for nearly all the GDWNs
we encounter in our work, which are nearly always constructed out of PVC pipe. A deeper discussion of
this can be found in Jones (2011) pp. 39-44. Finally, there is no current standard for assumptions of
minimum static pressure head in gravity water network design. Some examples from gravity water
network design references include 5 m (Bouman, 2014), 10 m (Arnalich, 2010), 5-15 m (Action Contre La
FAIM, 2008), and 8-20 m (Swamee and Sharma 2008). Thus, 7 m is a reasonable assumption and in line
with our own experience of common practice. Including even larger values for hmi, will unnecessarily
increase pipe sizes and thus cost. This justification has been included in the paper.

Arnalich, S.: How to design a Gravity Flow Water System. Arnalich — Water and Habitat, 2010.
Bouman, D.: Hydraulic design for gravity based water schemes. Aqua for All, Den Haag, 2014.

Action Contre La FAIM: Design, Sizing, Construction and Maintenance of Gravity-Fed Systems in Rural
Areas: Module 2, 2008.

Swamee, P. K., and Sharma, A. K.: Design of Water Supply Pipe Networks, p. 99, Wiley, Hoboken, NJ,
2008.

Jones, G. F.: Gravity-driven Water Flow in Networks: Theory and Design, pp. 39-44. Wiley, Hoboken, NJ,
2011.

18. The discussion section in the present form is relatively weak and should be strengthened with more
details and justifications.

Author’s Response:
18. We have added a number of additional elements to the discussion in order to strengthen it, per your

suggestion. A discussion of the CB results in the context of the mapping schemes now appears in Section
6. Even though our tabular results are based on up-sizing, each of the methods described in Section 6



produce a solution closer to the global minimum of the more-computationally intensive and not-so-
scalable BT method. These methods engage the designer to make decisions on pipe-ordering (e.g., large
diameters are chosen upstream of small diameters for the compound-pipe approach) and the
acceptability or unacceptability of a diameter change relative to the HGL corresponding to the CB
continuous diameter results. In addition, discussion of the rationale behind GA techniques used and
parameter tuning has been added, including a clearer explanation of the relevance of these criteria may
have on the results of the study. Where appropriate, we have included more details in sections which
were a better fit for their inclusion, for example, the comparison of our BT algorithm to the Gonzélez-
Cebollada algorithm (section 4.3).

19. Moreover, the manuscript could be substantially improved by relying and citing more on recent
literatures about real-life case studies of contemporary soft computing techniques in water resources
engineering such as the followings:

e Gholami, V., et al., “Modeling of groundwater level fluctuations using dendrochronology in
alluvial aquifers”, Journal of Hydrology 529 (3): 1060-1069 2015.

e Taormina, R., et al., “Data-driven input variable selection for rainfall-runoff modeling using
binary-coded particle swarm optimization and Extreme Learning Machines”, Journal of
Hydrology 529 (3): 1617-1632 2015.

e Wuy, C.L, etal., “Methods to improve neural network performance in daily flows prediction,”
Journal of Hydrology 372 (1-4): 80-93 2009.

e Wang, W.C, et al., “Improving forecasting accuracy of annual runoff time series using ARIMA
based on EEMD decomposition,” Water Resources Management 29 (8): 2655-2675 2015.

e Chen, X.Y,, et al., “A Novel Hybrid Neural Network based on Continuity Equation and Fuzzy
Pattern-recognition for Downstream Daily River Discharge Forecasting,” Journal of
Hydroinformatics 17 (5): 733-744 2015.

e Saeidifarzad, B., et al., “Multi-site calibration of linear reservoir based geomorphologic rainfall-
runoff models”, Water 6 (9): 2690-2716 2014.

19. We have looked at the literature examples you have provided and reviewed their scope in
comparison with that of the current paper. Our paper focuses on water distribution network design, a
significant body of work in its own right without including other aspects of the much broader field of
water resources. We felt that the inclusion of references on aquifer levels and flows prediction for
watersheds and runoff did not fit within the scope of our paper. We have included a reference to
Taorimina (2015), however, in an attempt to highlight the many uses of metaheuristic methods in water
resources engineering.

20. In the conclusion section, the limitations of this study, suggested improvements of this work and
future directions should be highlighted.

Author’s Response:

20. The conclusions section has been has been updated to highlight the limitations of the study (e.g., the
scalability of the BT algorithm, the lack of inclusion of some GA improvements reported in the literature)
and improvements and future directions for the work (e.g., integrating the strengths of the BT to map
the CB algorithm continuous diameter solution to a discrete diameter solution and verifying the
suitability of the BT and BT-NoUp algorithms on other large GDWNs).



Thank you again for your time spent reviewing our paper.
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Abstract. The design of a water network requires the selection of pipe diameters that satisfy pressure and flow requirements
while optimizing for cost. This work focuses on the design of moderate-scale branching Gravity-Driven Water Networks
(GDWNS), in contrast to large urban-scale looping networks, where budgets are highly constrained and where Polyvinyl
chloride (PVC) pipe is typically used. To help designers of GDWNSs select an appropriate design approach for a given network
problem, three cost-minimization algorithms are presented and results compared with five GDWN test cases. Two algorithms,
a backtracking algorithm and a genetic algorithm, use a set of discrete pipe diameters, while a new calculus-based algorithm
produces a continuous-diameter solution, which is mapped onto a discrete-diameter solution. The backtracking algorithm
produced the overall lowest-cost solutions with relative efficiency for the test cases, while the calculus-based algorithm
produced slightly higher-cost results but with greater scalability to networks with more links. Furthermore, the new calculus-
based algorithm’s continuous-diameter and mapped solutions provided lower and upper bounds, respectively, on the discrete-
diameter global optimum cost, where the mapped solutions were typically within one diameter size of the global optimum.
Overall, the genetic algorithm as implemented did not produce results which deemed it compelling over deterministic methods
for GDWN design. However, for more complex networks and problem formulations, a genetic algorithm may be more
advantageous, particularly if it incorporates improvements reported in the literature. The results of this study highlight the
advantages and weaknesses of each GDWN design method including closeness to the global optimum, the ability to prune the
solution space of infeasible and sub-optimal candidates without missing the global optimum, and calculation time. We also
extend an existing closed-form model of Jones (210) to include minor losses, a more-comprehensive two-part cost model,
which realistically applies to pipe sizes that span a broad range typical of GDWNs of interest in this work, and for smooth and

commercial steel roughness values.

1 Introduction

A gravity-driven water network (GDWN) is commonly constructed to deliver potable water to a community in a
developing region. These systems draw water from a source at a high elevation, such as a natural spring or a stream, and

deliver it through a branching pipe network to household taps or public tapstands (Fig. 1). In principal, loops and
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loop/branching constructs may be added to networks for greater reliability, but material cost considerations often restrict
attention to just branch networks in GDWNs. The methodologies presented in this paper, however, may be extended to all
networks, including those with loops. When feasible, gravity water networks are very attractive compared with pumped
networks because of their simplicity and lower capital, operational, and maintenance costs. In addition, in most locations
where GDWN are considered, there may be little or no access to reliable grid-based electrical power for pumps.

Water networks are modelled as a collection of nodes, each representing a point of water demand or supply, which
are connected with links representing pipes. Typically, the layout of the site is known, including water source and demand
locations and elevations of all other nodes. For the present work, design flow rates are determined from community survey
data, which are extrapolated for future population growth. Networks in this category are referred to as “demand-driven”
designs. Bhave (1978) refers to these as “Q-specified” designs. Thus, to design a network of this type, pipe diameters for each
link must be chosen such that acceptable but arbitrary minimum pressure heads are maintained at each node given a design
flow rate at the node. Furthermore, application of the energy equation to this network demonstrates that the design problem is
non-unique; i.e., choosing different pressure heads at the nodes will result in a different pipe diameter solution for the network,
and thus different networks costs.

In practice, gravity-driven water networks are commonly designed by a marching method, where diameters for each
link of the network are chosen sequentially. After selecting a reasonable diameter for each link, the designer calculates the
static pressure head at the link outlet, and proceeds to the next link if this result is acceptable. In this way, the designer marches
through the network until all pipe diameters have been selected. This method produces a feasible solution, but not a cost-
optimized one. As noted by Bhave (2003), cost savings of 20-30% can result from the use of optimization techniques. In
developing regions, the cost of a water network can be prohibitive, adding to the importance of optimizing network design.

Within the provided framework, the global optimum can be found through an exhaustive search of the solution space,
known as complete enumeration, although this is infeasible when considering networks with many links and diameter choices
(Kadu et al. 2008; Gonzalez-Cebollada 2011). To reduce the computational time required by enumeration, authors have
proposed various partial enumeration methods which prune the search space (Kadu et al. 2008), although some of these
techniques may remove the global optimum (Simpson et al. 1994). The most common types of algorithms that have been
applied to optimize water network design include traditional deterministic methods, heuristic methods, metaheuristic methods,
multi-objective methods, and decomposition methods (Zhao et al. 2016).

Deterministic methods include linear programming (LP), dynamic programming, and nonlinear programming (NLP),
and typically involve rigorous mathematical approaches (Zhao et al. 2016). A brief overview and comparison of these
algorithms is given in Kansal, et al. (1996), who use a single-part cost correlation for metric pipe diameters between 100 mm
and 350 mm. Linear programming techniques have relatively low computational complexity and allow each link to be
composed of two diameters, called a split-pipe solution, although these may not always be practical to implement (Kessler and

Shamir 1989, Swamee and Sharma 2000, Samani and Mottaghi 2006). LP can also get stuck in a local optimum (Zhao et al.
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2016), although combining LP with metaheuristic techniques can help with the problem’s non-smoothness properties
(Krapivka and Ostfeld 2009). Dynamic programming has been used by Yang et al. (1975) and Martin (1980) to optimize
networks in stages. This approach begins at the discharge nodes, proceeding to select feasible diameters and joints for upstream
stages and storing these partial candidates in memory until the source node is reached. At this point, the algorithm reviews the
feasible segment design options and selects a combination of stage solutions producing the lowest cost overall solution. This
method, however, requires the designer to allow a relatively narrow range for the design pressure of each node, or otherwise
store a large set of feasible candidate solutions in memory and also allow adjoining branches to arrive at different heads at the
same node.

Nonlinear programming, a calculus-based method, deals with each link’s diameter as a continuous variable. Using
Lagrange multipliers and a one-part, pipe-cost model with minor-lossless flow, Swamee and Sharma (2000) developed systems
of equations for both continuous and discrete pipe diameters for branch networks, assuming constant friction factor. When
solved, the solution gives diameter values that minimize distribution main cost, not network cost. In carrying out the solution,
iteration is required to update the value of the friction factor. For the discrete diameter case, large computational times were
noted by Swamee and Sharma because of the stiffness of the mathematical system. Cases where one or more nodal pressure
heads are not acceptable need to be treated manually by the designer in various ways as discussed by the authors.

For branching networks, Jones (2011) showed that by restricting the focus to smooth-turbulent, minor-lossless flow,
and the use of a one-part, pipe-cost model, a simple nonlinear algebraic equation for each internal node in the distribution main
could be developed. The equation has been extended in the present work to include minor losses and rough pipe. When solved
simultaneously with the energy equation for each link, a unique solution for all link diameters and nodal pressure head values
are obtained that produces minimum network cost, as opposed to the distribution main cost as in Swamee and Sharma (2000).
The method of Jones (2011) also applies to serial and loop networks because of its generality.

Heuristic methods follow specific rules to incrementally build better solutions, although the rules are not strictly
formulated to trend towards local or global optima. An approach by Monbaliu et al. (1990) sets all network pipes to their
minimum size, where the pipe that has a maximum head loss gradient is incremented to its next-highest size until all nodal
head requirements are satisfied. Similarly, an algorithm by Keedwell and Khu (2006) selects an initial solution and iteratively
responds to nodal head deficits and surpluses by incrementing or decrementing pipe sizes accordingly until a feasible solution
is found. Suribabu (2012) proposed a heuristic that identifies pipes to increment or decrement in size based on flow velocity
and alternative metrics such as proximity to the source node, achieving acceptable cost results with computational efficiency.
While these algorithms are typically computationally efficient, they do not guarantee a global optimum.

Metaheuristic optimization methods allow for a set of solutions to evolve through random processes that are guided
with an objective function which rewards low network costs and penalizes hydraulic insufficiencies. Examples include
evolutionary algorithms, which are most commonly genetic algorithms (Krapivka and Ostfeld 2009, Simpson et al. 1994, Kadu

et al. 2008, Prasad and Park 2004), simulated annealing (Vasan and Simonovic 2010; Tospornsampan et al. 2007), ant colony
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optimization (Maier et al. 2003), and differential evolution (Vasan and Simonovic 2010). As reviewed by Nicklow et al. (2010),
evolutionary algorithms are an emerging popular alternative to the deterministic methods, and they offer the opportunity to
accommodate unique constraints and multiple design objectives. The main challenges for evolutionary algorithms are the
difficulty of incorporating constraints into objective functions, the optimum selection of parameters, and a relatively large
amount of computational effort. In addition to optimizing for cost, multi-objective methods, often based on evolutionary
algorithms, allow the designer to choose from a Pareto-optimal front of objectives, such as cost and reliability (Prasad and
Park 2004). In addition to water network design, metaheuristic algorithms have been used for a range of problems in water
resources engineering, such as rainfall and runoff modelling (Taormina et al. 2015).

Decomposition methods involve the partitioning of networks into smaller sub-networks which are each optimized
using one of many types of techniques and then combined into an overall solution. In some cases, the loops in the sub-networks
are removed, producing branching trees which are then optimized individually. Techniques used to optimize the sub-networks
can involve multiple methods, including linear programming (Saldarriaga 2013) and differential evolution (Zheng et al. 2013),
with a later stage optimizing the network as a whole using the sub-network solutions as inputs. Note that another distinct use
of the term ‘decomposition’ refers to the approach of iteratively solving “inner” and “outer” mathematical problem
formulations, and has been used in the literature by Krapivka and Ostfeld (2009) who traces its use in this context back to
Alperovits and Shamir (1977).

In the present study, we present three algorithms, each from one of three major categories of methods applied to cost
optimization of water distribution networks, and compare their performance on five cases adapted from real GDWNs. These
algorithms include (1) the calculus-based (CB) optimization model of Jones (2011), an NLP method, (2) backtracking (BT), a
partial enumeration method, and (3) a genetic algorithm (GA), a metaheuristic method. Major distinguishing features of these
algorithms include their working use of continuous diameters (CB) versus discrete diameters (BT and GA), their deterministic
nature (CB and BT) versus a stochastic nature (GA), and their relative scalability as better (CB, GA) and worse (BT) for larger
networks. In terms of their ability to find a global optimum solution for the problem formulation, CB finds a global optimum
for continuous diameters but cannot guarantee a discrete diameter global optimum in its mapped solution, BT can guarantee a
discrete global optimum, and GA cannot guarantee an optimum. For a direct comparison of techniques, the pipe costs used for
all algorithms are found by interpolating a two-part cost formula based on a curve-fit of real cost data for available diameter
values. The three algorithms are tested against networks adapted from field data on five actual GDWNs installed in Panama,
Nicaragua, and the Philippines.

Within the broader context of water network problem formulations, this paper is concerned with finding cost-optimal
single-diameter solutions to branching water distribution networks with steady-state demand flows and pre-specified pipe
locations.. By implication of being gravity-driven, the problem does not involve the use of pumping stations. This problem

formulation is directly applicable to typical gravity-driven water networks, and is also useful for multi-objective algorithms,



10

15

20

25

the consideration of sub-networks in a decomposition technique, pumped networks, and looped system optimization, which
can involve reformulating the problem into a branching configuration.

The results of this study highlight the advantages and weaknesses of each GDWN design method including closeness
to the global optimum, the ability to prune the solution space of infeasible and sub-optimal candidates without missing the
global optimum, and also computational time. We present two pre-processors with which discrete-diameter search methods
can use to reduce the search space without pruning the global optimum. To the authors’ knowledge, is the first implementation
of Pre-Processor 1 in enumeration methods and the first implementation of Pre-Processor 2 in any method. We also extend the
Jones closed-form model to include minor losses, a more-comprehensive two-part cost model, which realistically applies to
pipe sizes that span a broad range typical of GDWNs of interest in this work, and for smooth and commercial steel roughness

values.

2 Problem Formulation

Branching networks are considered (Fig. 1), where all branches connect a distribution main node with a delivery
node, shown as tapstands or houses. For each link in a network of N¢ links, pipe length (L) and the net elevation change (Az)
are considered fixed. Steady-state flow rates (Q) are prescribed for each link based on the demand flow data at delivery nodes.
As noted above, demand flows are determined by community surveys and extrapolated in time to quantitatively account for
population growth. Minor losses are accounted for through a minor loss coefficient K or a dimensionless equivalent pipe
length, (L./D, or in symbol form, L.,,.), Where Le is the pipe length of diameter D whose frictional loss results in the
corresponding minor loss. An optimal solution is obtained by selecting pipe diameters (D) from a set of commercially available
diameters such that the network’s material cost is minimized. With Ny, choices of diameters for N, links, the problem has NLI)V L
candidate solutions.

For all nodes, static pressure, h, is greater than or equal to a chosen minimum, h,,,;,,. The value for h,,;, is selected
to eliminate possible leakage of contaminated ground water into the network should the operating conditions change in an
unanticipated way. The change in static pressure head, A h, across each link is calculated with the energy equation for pipe
flow,

80?2

T2gD* @

L
Ah = —Az+<a+K+f<5+LebyD))

where for each link, a is the kinetic energy correction factor and f is the Darcy friction factor, calculated with the Colebrook-
White equation (Colebrook and White 1937) or Churchill correlation (Churchill 1977), and g is acceleration of gravity. The
kinetic energy correction factor, «, is considered only in the first link, where acceleration from a zero-velocity source is

sometimes non-negligible for the smallest of GDWNs that have been encountered. Thus,
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a={2 Res2300
1.05 Re > 2300

where Re is the Reynolds number for pipe flow, 4Q/ = v D, and v is the kinematic viscosity of water. The possibility of laminar
flow (Re < 2300) is permitted since branches from the smallest GDWN observed in practice have been in this regime.

The pressure upper bound is not incorporated into the optimization process. Worst-case pressure conditions occur
under hydrostatic conditions, which are directly related to the maximum elevation change in the network and where no flow
occurs. Therefore, before the optimization process is undertaken, the selections of appropriate pressure ratings for the pipe
and, if needed, break-pressure tanks are left to the correct judgment of the designer under no-flow conditions. In addition,

precautions against water hammer are left to the designer.

3 New Calculus-Based Algorithm

In this section we develop a new calculus-based algorithm for pipe diameters that minimize overall pipe cost for the
network. First appearing in the text by Jones (2011), this algorithm is solved simultaneously with the energy equation for each
link to produce unique solutions for D and nodal pressure head values that minimize network pipe cost, as opposed to only the
distribution main cost as in Swamee and Sharma (2000). The method also applies to serial and loop networks.

First consider the physical basis for the existence of a unique set of pipe diameters and static pressures for the demand-
driven design problem with cost minimization included. Several works reviewed in the previous section have considered
optimization of GDWN and combined pumped and gravity-driven networks. We assume continuous pipe diameters in this
section; values that result from the solution of the energy equation. Mapping between continuous diameters and the discrete
nominal sizes, required to complete the design, will not be fully addressed in the present work. However, we will discuss two
methods we have used for mapping the continuous D solutions onto the discrete pipe diameter set.

Consider the three-pipe network shown in Fig. 2. Pipes 1-2, 2-3, and 2-4 meet where head h, is unknown. Each pipe
has prescribed volume flow rate and length and unknown diameter D as shown. The change in elevation between the top and
bottom of each pipe is Az and Ah is the change in static pressure head. There is a prescribed head at each outlet for pipes 2-3
and 2-4.

To facilitate insight, we at first assume turbulent flow, which can be verified post-calculation if necessary, in smooth
pipe and that minor losses are negligible. Two sources for the friction factor for smooth-turbulent flow are considered, namely
the classical Blasius equation (reported in Streeter et al. 1998), £ = 0.316 Re'**, and the Swamee-Jain correlation (Swamee
and Jain 1976), £ = 0.175 Re®1%23 (though not explicitly appearing in this reference, f from the Swamee-Jain correlation is
obtained by writing it for smooth pipe and comparing this with the energy equation, where f is assumed to be in the form
aRen). The Blasius equation has higher accuracy (2% for low Re and 3% for high Re) in the range 10* < Re < 105, over which
most of the GDWNSs in this work operate, compared with the Swamee-Jain correlation of +8% / -3%, thus prompting the

Blasius equation to be chosen for this work. A combination of the Blasius equation with the energy equation gives explicit
6
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formulas for D for the three links in Fig. 2. For simplicity, and to reduce the number of free parameters, the conditions for

pipes 2-3 and 2-4 are assumed to be identical without loss of generality. We obtain

Az, + Ahyy v/
Dy, = 0.741 ( 12 3 4/19( )7/19
1
Azys + Ah Q @
A V
D,s =D,, = 0.741 (%) 4/19(23—)7/19
2
With our assumptions and inspection of Fig. 2, Ah,, = —h, and Ah,; = Ah,, = h, — h; = h, — h,, obtain
Az, — h, V177
Dy, = 0.741 ( 12L ) 4/19(Q12 )7/19
1
A hs+h Q ®
Zoa —
Dy3 = Dyy = 0.741 (————2)" " A )7/1"
2
The pipe cost model can be assumed to follow a power-law relationship (Swamee and Sharma 2008)
¢ = a (2 4
=a(g) 4

where a is a constant coefficient, b is a constant exponent, and D,, an assumed unit diameter. A more robust, two-part model,
valid for a greater range of pipe sizes than that of Swamee and Sharma (2008), will be used below. The use of pipe material
cost as the objective function was assumed because of relevance. In most GDWNs of interest in this work, installation labor
comes from the local community and has no well-defined associated cost. The material cost for the network is of prime
importance since it normally comes from funds raised by nongovernmental organizations or grants, where there is seldom a
required repayment but are always in short supply. For a more-general case, the economics of a GDWN may be more
encompassing and include materials, labor, operation and maintenance, depreciation, taxes, and salvage, among others. The
time value of money may also need to be considered, which includes interest rates and estimation of the network lifetime.

With Eq. (4) the general expression for the total cost for the pipe material, C;, is obtained by summing over all links
ij,

b

Cr=ay Ly (%) (5)

ij

which, for the present problem, becomes

D12 D23 D24
cr=a a3 i (3~ (5)
T [ 12 Du 23 Du 24 Du

Diz\" Dys\"
_a[L“(D ) +2L23(D )
u u

A close inspection of Eq. (3) in combination with Eq. (6) will reveal the origin of the existence of an optimal h, for

(6)

the design of the network in Fig. 2. Because of its arbitrariness, we are free to vary the value of h,. As h, increases, say from

a small value like 1 m, the pressure difference between the junction and the bottom of pipe 2-3 (and 2-4) increases. Since the
7
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volume flow rates in each pipe are fixed, an increase in pressure drop across pipe 2-3 (and 2-4) requires a reduction in D,
(and D,,). This is evident from our inspection of the second of Eq. (3), where we see that D,; and D,, are both proportional
to (Az;, — hs + hy)™*/1°; that is (Az,, — hy + h,)~*/*° decreases as h, increases.

Because the top of pipe 1-2 is at atmospheric pressure, an increase in h, will decrease the pressure drop between the
top of pipe 1-2 and the junction. Thus, compared with pipes 2-3 and 2-4, the opposite effect occurs in pipe 1-2; D;, increases
with increasing h,. For insight on how the energy equation supports this explanation, note that the first of Egs. (3) requires
that D;, ~ (Az;, — h,)~**° increases as h, increases.

From this discussion it is clear that for an increasing h, there is a competition between the decrease of D,5 (and D,,)
and an increase in D,,. Once the effect of D on pipe cost is included through Eg. (6), as h, increases we see that the cost for
pipes 2-3 and 2-4 decrease, and the cost for pipe 1-2 increases. A consequence of this competition is the existence of an
optimum, in this case an optimal h,, which produces the smallest possible cost.

The mathematical basis for a unique solution for h, with cost minimization is now presented. In addition to the fixed
pipe lengths, the total cost depends on the diameters for all of the pipes in the network. For the case of Fig. 2, where we now
allow pipe 2-3 and pipe 2-4 to be different, get

Cr = CT(D12 (hz): Dzs(hz):Dm(hz)) (7)
Using the chain rule from the calculus, the total differential of Eq. (7) is
daCy 0D aCy dD aCy dD
CT=—T—12 2+_TJ 2+_Tjdh2
dD,, dh, 0D,; Oh, dD,, Oh, (8)

The minimum value of C; is found once dCr = 0 (and once it is verified that the second derivative of C is positive thus

indicating that C; is indeed a minimum). Requiring this, obtain

"~ 0D, dh,  dD,; dh, 0D,, Oh,

The cost Cy is from Eq. (5), so the derivatives like dCy/dD;, in Eq. (9) are written in general as

b-1
aD

D—g Lij (10)

i
for any link ij.
The derivatives like dD,,/dh, in Eq. (9) are obtained by taking the partial derivative of the pipe diameter with respect

to the relevant pressure head in the appropriate energy equation. For the full energy equation, where D appears in a nonlinear
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way in more than one location, this would be done using numerical methods. However, if we restrict our interest to minor-

lossless, smooth-turbulent flow as noted above, we can use the energy equations like Eq. (3). Obtain for pipe 1-2

0Dy, Azy5 — 23 "7 Q12
= /19 7/19
oh, 0.156( I ) ( 77 L19/7) (17)
For pipe 2-3, we get
0Dy3 Azy3 + hy — "7 Qa3
= —0.156(—=>—~= = 23/19 7/19
oh, ( Ly3 ) ( g’ L19/7) (12)
and for pipe 2-4,
7
23/ 1 1
0Dz4 _ —0.156 (AZZ4 +h, — h4)19 V7 Qa4 (13)
oh, Ly, s 2
97 Ly,

Equations (10)—(13) are combined with Eq. (9) to produce a single algebraic equation that depends on h,, as well as D;,, D,5,

and D,,. Introducing D,,, D,3, and D,, from Egs (3) into this single algebraic equation, we get

0= 7b/19(AZ12 hz)_(1+4b/19) _ Q7b/19(A223 + h; — hs)_(1+4b/19)
Ly, 23 Ly3
A h,—h (14)
_ Q27:/19( Zys + Ny — 4)—(1+4b/19)
L24
The general form of Eq. (14), written at any internal node is
_ 7b/19 —(1+4b/19) 7b/19 —(1+4b/19)
0= ¢ Y. o (15)
ij,in ij,out
where the hydraulic gradient, S;;, is
Az;; + Ahy;
y=—1 (16)

ij

In Eq. (15) the indices ij,in and ij,out on the summations refer to inflows and outflows at the node (e.g., in Fig. 2, ij,in
=12 and ij,out = 23 and 24). Equation (15), the new CB algorithm proposed in this work, is written for each internal node in
the network and solved simultaneously with the energy equation for each link to obtain unique and optimal values of Dj; for
all links and h; for all internal nodes. It is understood that the nodal pressure heads determined from the solution of this system
must be greater than or equal to the hmin prescribed for the network. For nodes that do not satisfy this condition, the pressure
head is set equal to hmin, as part of the CB algorithm. Thus h; > hnin.

Minor losses using the equivalent-length method can be included in the above developments by artificially extending
the length of the link by L, in which minor loss occurs, thus contributing a non-zero L., termin Eq. (1). We also extend the

cost model of Eq. (5) from Swamee and Sharma (2008) to encompass two different ranges of pipe diameters having two
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different coefficients a and exponents 4. The link between the two ranges starts at discrete pipe size D, at and below which
the cost model for the small (subscript s) pipe sizes applies, and discrete pipe size D.+1, at and above which the cost model
for the large (subscript /) pipe sizes applies. The cutoff diameter, D.. is chosen by the designer based on inspection of cost vs.

diameter data. Thus,

(a s( )”S Dij = Dc,
D;; D;j\? D;ij\?
Cij=Lijic,+c +c(”) +c(l), D, <D;; <D 17)
3] 3] | 1 2 Du 3 Du 4 Du co ij co+1
La{’( )be DU = Dco+1

In Eqg. (17), a, and a, are the coefficients for the small and large pipe size regions, respectively, and b and b, are the
exponents for the small and large pipe size regions, respectively. A cubic spline is fit between pipe sizes D, and D, ,; t0
complete the transition between small and large pipe sizes. The coefficients of this polynomial are c¢,, c¢,, c3, and c, as seen in

Eq. (17). These coefficients are evaluated by matching the cubic polynomial and pipe data at D, and D, and the first
derivative of the polynomial with respect to D;;/D,, to asbs(%)”f1 at D;; = D, and to agbg(%)bf‘l at D;j = Dgoyq. AN

example of data for Polyvinyl chloride (PVC) pipe and the curvefit is shown in Fig. 3. The results of the curvefit are: D, =
2.067 in., D4y = 2469 in., a; = $1.349 m?, b, = 1.157, a, = $1.381 m*, b, = 1.344, ¢, = $237.516 m?, ¢,

—$316.125 m?, ¢; = $140.450 m%, ¢, = —$20.499 mL. Itis clear from inspection of Fig. 3 that a one-part cost model would
not have produced an acceptable curve-fit to pipe-cost data.
With the inclusion of the two-part cost model and minor loss term, Eg. (15) becomes

L

5 149 19 QU
c'ijA; (1+ei)0s;; 74010

Zij,in L

4‘9 15 19 Ql]
1-B A} € (1+ei)) 19, <g4D19>

0=

: . < o )ww (18)

A19 1 19 19
o (1+€;)1° Sij g4D19

- Zij,out

1/19

5 15 s (%
1- BAL €ij (1+6U) 19 S (g4D19>

where B = 0.1989 and
(=3 (L) b .
L
/ — \D /i Ly

7]
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-3,
Y - D /i Lij

4 _{0.318, smooth pipe
4 7 (0.420, steel pipe

(20)

and A accounts for the effect of pipe roughness (smooth and commercial steel). The term C’;; is the derivative of the cost

function per unit length with respect to D/D,,. For the two-part cost model from above, obtain

(a0, PO Dyj < Deq
C,i}' =4C + 2C3( U) + 3c ( )2 Dco < Dij < DCO+1 (21)
ka{’b{’( )b{J ! Dlj = Dco+1

Equation (18), and its simpler form Eq. (15), forms the basis for calculus-based optimization in this work and is
applied at all internal nodes to uniquely determine h;. Equation (18) is valid over the range of ~4000 < Re < ~300,000.
Algorithms to solve a general set of independent, nonlinear algebraic equations using, for example, the Levenberg-Marquardt,
Quasi-Newton, Newton-Raphson, or Conjugate Gradient methods are available in most commercial math packages including
Matlab (1 Apple Hill Drive, Natick, MA USA 01760) and Mathcad (http://www.ptc.com). We used the package Mathcad in
the present work. Thus, compared with an iterative solution procedure, a solution flowchart is not relevant here.

Bhave (1978) first proposed an algorithm like Eq. (15). However, Bhave used an iterative method to solve the design
problem. As such, there are several qualifications leading up to the cost minimization equation in Bhave. These include the
assumption of smallness in variation of the static pressure head between two iterations. This allowed the terms in the cost
function to be approximated as constants. In the present work, the cost-function coefficient and exponent are not assumed
constant at any node joining two sets of links; see Equation (18). Nor do we make any assumptions on the orders of magnitude

of the terms in our equations to simplify them. For clarity, we re-present Eq. (15) using Bhave’s (1978) notation as
0= z Q7b/195 (1+4b/19) Z Q7b/19 ~(1+4b/19)

where the ij and jk notation are shown in Fig. 4. Index j spans all internal nodes along the distribution main.

4 Backtracking Algorithm and Genetic Algorithm

Backtracking (BT) and genetic algorithm (GA) assess candidate solutions composed of discrete diameters from a commercially
available set. These candidates are represented by a vector of size [1, N, ] where each element corresponds to a network link.
The values of the vector specify a diameter from the commercially available set that are indexed from smallest (i, = 1) to

largest (i, = Np). To reduce the computational time associated with these evaluations, the constraints imposed by the energy
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equation and cost minimization may be more efficiently evaluated through lookup tables. With fixed L, Az, K, Lepyp, and a,

the change in static pressure head Ah is evaluated for all N,xN, combinations of pipe diameter and link index:
Ahyy - Ahgy,

Ah = (22)

Ahy,1 =+ Ahypy,
While an algorithm evaluates a candidate solution, the static pressure head at each node is sequentially calculated by
“marching” through the network. Starting with the fixed source pressure head, the algorithm finds the pressure head h; for a
given node by adding the head at the upstream node, h;_, to the change in head for that link i, and the diameter i, under
consideration. Thus,
hi = hi—y + Ah(ip,i,) (23)

Along with the hydraulic evaluation of a candidate solution, the cost of the partial candidate is found through the use of a
lookup table C,

Ciy ClNL

CNDl CNDNL
where C(ip, i;) returns the additional cost of assigning a diameter with index i, to link i, . In this way, the candidate solution’s
hydraulic performance and cost are incorporated into the genetic algorithm and backtracking approaches. In contrast to GA,
the backtracking algorithm evaluates static pressure head and cost upon consideration of each partial candidate, where GA

calculates these values on full candidates as part of the objective function.

4.1 BT and GA Pre-Processor 1: Maximum Available Diameter

To increase the efficiency of BT and GA, it is advantageous to limit the number of pipe diameters in the available set,
especially those outside of the range of the optimal solution. In particular for the BT algorithm, larger diameters can require
considerable computational effort, since they tend not to violate static head requirements and require multiple-link partial
candidates for the algorithm to reject them once their cost exceeds that of an already-found viable candidate. Therefore, a pre-
processor is used to provide a maximum diameter (D,,,,) that should be considered during the optimization process. This
procedure, which produces a conservative estimate, finds the smallest diameter at which a network with a single pipe diameter
choice produces no nodes with a static pressure head below h,,;,, similar to the technique used by Mohan and Jinesh Babu
(2009). After this diameter is found, the next-larger diameter in the set is selected as D,,,, to allow the algorithm to select a
larger-than-necessary diameter if this is able to save cost elsewhere. If D,,,,, appears in the optimum solution, the designer can
elect to further increase this maximum diameter. It worth noting that Kadu et al. (2008) presents another method to further
prune the search space with the critical path concept, where Dongre and Gupta (2011) noted the computational advantages of
having just four diameter choices per link. This method, however, may prune the global optimum and may not produce feasible

head values at intermediate nodes, as in the case of networks with a local high point.
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4.2 BT and GA Pre-Processor 2: Adjusted Minimum Static Pressure Head

A second pre-processor adjusts the minimum static pressure head requirement for each internal node by considering
the total head required at downstream nodes. It can be recognized that, without the use of a pump, the total head cannot increase
at nodes downstream of a given node i. Furthermore, the total head must decline at a minimum grade that is determined by the
demand volume flow rate and the largest pipe diameter available (D,,,,) for selection. This energy constraint is utilized to
reduce the number of candidates to be considered by increasing the minimum static pressure head at nodes where these rules
produce a higher minimum head than the original h,,;,. For example, nodes upstream of a local network high point can have
their minimum static pressure head increased beyond the normal minimum, since the static pressure head must be great enough
to ensure adequate flow to the higher-elevation downstream node. To begin this process, each node i is initialized with a
baseline minimum total head,

thimini = zi + hinin (25)
thmn ; 1S thus initialized by considering only the node’s hydraulic requirements in isolation, i.e., without acknowledging the
neighboring downstream nodes. The pre-processor then considers updating th,,;, ; by checking the following condition, which
is false when the minimum static pressure head at downstream nodes produces further constraints on an upstream node i. Thus,
for all nodes i which are upstream of some node j, the following inequality can be evaluated

Li_; 8Q;_;%
thiini — thiinj = <ai—j +Kij+ fij <Dl—] + LebyDi_j>>$ (26)
i—j max

Also, consider that when flow rate Q;_; issmall and Dy, is large, the right hand side of Eq. (26) approaches zero, representing
the simple statement that upstream total head must always be greater than downstream total head. When the condition in Eq.
(26) is false, the minimum total head can be updated in node i such that the maximum diameter size in link i-j is able to meet

the downstream node’s minimum total head, or

8Q;;*
T[ZgDmax4

thinini = thiinj + <ai—j +Ki;+ fi_j <—D- -+ Lebyni_j>>
i-j

@7)

In this way, th,,;, ; may be updated for each node until the condition in Eq. (26) is true for all nodes i with a downstream node
j connected by a single link.

After the values for thy,;,; are updated, they are converted back into minimum static pressure head values by
subtracting the elevation z; from th,,;, ;. This pre-processor serves to narrow the search for viable candidate solutions by
potentially increasing the minimum static pressure head. Since backtracking and GA consider network links in the downstream
direction, these algorithms are otherwise blind to future downstream static pressure head requirements. This limitation is

alleviated by the pre-processor, which allows these algorithms some implicit information about what local diameter choices
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will be viable for the full network solution. Note that both pre-processors discussed will not prune the global optimum from

the solution.

4.3 Backtracking Algorithm (BT)

The backtracking algorithm employs a systematic search of candidate solutions to find a global optimum. The
algorithm works recursively to incrementally build candidate solutions while checking the candidates for hydraulic and cost
acceptability. The strength of the BT is that, upon discovery of an infeasible partial candidate, all extensions of that candidate
can be eliminated from consideration. In this way, many solutions can be pruned from the solution tree to achieve greater
computational efficiency.

Two backtracking methods can be found in the literature, namely those by Gessler (1985) and Gonzalez-Cebollada
et al. (2011). The algorithm proposed by Gessler, however, also proposes a pipe-grouping criteria that risks pruning the global
optimum and represents a tricky optimization problem in and of itself (Raad 2011). The Gonzalez-Cebollada algorithm, on the
other hand, does not include such criteria to potentially prune a global optimum from consideration, but it halts its search after
finding the first feasible solution. In contrast, the BT algorithm in the present study guarantees a global optimum by continuing
its search of the solution tree even after the first solution has been found. In addition, the present BT algorithm utilizes Pre-
Processors 1 and 2 to further reduce the search space, without risk of pruning the global optimum, in advance of its search
routine. Thus, out of the two reported backtracking algorithms in the literature, both do not guarantee a global optimum, while
the BT algorithm presented in this work does. It should be noted that BT is known to scale poorly with large network sizes
and would not be appropriate for use on large urban networks, though its appropriateness is demonstrated here for GDWNs,
given that the test cases used in this paper representative of the sizes of GDWNSs that would be expected in practice.

Backtracking is a type of partial enumeration method, which Raad (2011) notes can drastically reduce the number of
solutions to be evaluated based on two rejection criteria. The first rejection criterion is that when a candidate violates static
pressure head constraints, all candidates with equal or lesser diameter sizes can be discarded. This condition is leveraged even
more effectively with Pre-Processor 2 above, which can increase static pressure heads at individual nodes by anticipating the
head requirements at surrounding nodes. The second rejection criterion is that once a feasible candidate has been found, all
other partial candidates with a higher cost can also be discarded. The BT algorithm further extends this criterion by considering
that the links yet to be considered in a partial candidate, an “extension” to the partial candidate, will cost at a minimum that of
the entire extension being composed of the smallest available diameter. Thus, when considering whether the partial candidate
will necessarily be more expensive than the running optimum, this minimum extension cost can be added to the partial
candidate cost.

The backtracking algorithm begins its search of the solution tree by considering the partial candidate with the smallest
diameter size assigned to the first network link. The static pressure head and the partial candidate cost at the outlet node are

calculated with the Ah and C lookup tables. If this partial candidate meets static pressure head and cost requirements, the
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algorithm extends this partial candidate by assigning the smallest diameter to the downstream link. If a partial candidate
produces a node that is rejected on the basis of static pressure head, the next largest larger diameter is chosen for the link
upstream of the node. If no diameter satisfies the pressure head condition, the algorithm backtracks to the upstream link and
assigns a larger diameter to the link. If a node is connected to a delivery node by a single link, the smallest feasible diameter
for that link is found, and if no such diameter exists, the partial candidate is rejected. In this way, the algorithm continues to
extend and reject candidate solutions until a full candidate satisfies the static pressure head requirements. Once this has been
achieved, the diameter choices and cost of the network are stored as a running optimum.

Once a working solution has been found, candidate solutions may be rejected based on cost. For each new candidate,
cost is calculated by adding the cost of diameters that have already been assigned to the cost of assigning all downstream links
with the smallest diameter available. If this cost exceeds the cost of the running optimum, the partial candidate is rejected.
Unlike a candidate rejection based on static pressure head, a rejection based on cost does not consider siblings with larger
diameters, since these would only further add to cost, rather, the algorithm backtracks immediately to re-assigning the upstream
link.

In this way, the rejection criteria based on a minimum static pressure head and cost are used to prune the solution tree
and largely reduce the number of non-optimal candidates that need to be considered. The minimum static pressure head
criterion tends to prune candidates with diameters that are too small, while the running optimal cost criterion tends to prune
candidates of diameters that are too large.

Another pruning technique noted by Raad (2011) is to group together adjacent links that are sized identically. This
technique, in contrast to the former two mentioned, cannot guarantee an optimal result, and is therefore not included in the
present study’s BT algorithm. The present study’s BT algorithm operates similarly to the method presented by Gonzélez-
Cebollada et al. (2011), with the major difference being that the BT algorithm continues searching once it has found its first
feasible solution and its use of Pre-Processors 1 and 2. The BT algorithm could also be used in this way to find an initial
solution very quickly, and then continue as normal to find progressively better solutions until the end of the search space, or a

predefined condition such as calculation time, are met.

4.4 Modified Backtracking Algorithm (BT-NoUp)

A modification to the BT algorithm was made to further improve its computational speed, although at the risk of pruning the
global optimum from the search. This modified algorithm (BT-NoUp) rejects all candidates that feature a smaller diameter
that is upstream of a larger diameter when an equal or smaller flow rate is present in the downstream link. Typically, optimal
networks would not exhibit this feature, and in cases where a single source feeds into a network with constant-length links, it
is advantageous (or equivalent) to place larger diameters upstream of smaller diameters. However, due to the discrete nature

of diameter choices and link lengths, an optimization problem may, in fact, have an optimal candidate with a larger diameter
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downstream from smaller ones. For this reason, the BT-NoUp algorithm, unlike the BT algorithm, may miss the global

optimum at the expense of its greater computational efficiency.

4.5 Genetic Algorithm (GA)

Genetic algorithms are stochastic optimization techniques that mimic the process of natural selection, and numerous
recent variations of GAs have demonstrated improved performance on WDN design (Nicklow et al. 2010). Given their
popularity, the GA included in this study is meant to provide a point of comparison to the BT and CB algorithms when applied
to GDWNSs, and represents a straightforward GA implementation with an attempt to select appropriate operators and well-
tuned parameters.

When implemented in water network design, each candidate solution represents a selection of pipe diameters. The
algorithm is initialized with a population of candidates of size N, that repeatedly undergoes the processes of mutation,
crossover, and selection

¢ = [D1i Dai .. DNL,i] (28)
where each candidate in the population c; contains N, diameters. In the present work, candidates are represented as a string of
natural numbers, which is used over a binary representation to improve the efficiency of encoding and ensure uniqueness of
coded strings (Vairavamoorthy and Ali 2000). The mutation operator replaces pipe diameters with a diameter from a uniform
random distribution, where each link diameter has a probability of p,,,,,; 0f mutating on each generation. The crossover operator
randomly pairs all individuals in the population and performs a single-point crossover of the two individuals with probability
Pxover» Where the point of crossover is chosen randomly in the string of diameters. While a two-point crossover technique was
considered, the results were not found to have any benefit over a single-point technique, which was chosen for its greater
simplicity. The fitness, f;, of each candidate is assessed with penalties associated with the solution’s pipe cost, Cpipe,i, and
violations of the static pressure head requirement, Cp,q;, O

1
fi= Coipei T Crya,i (29)
The hydraulic cost is obtained for each individual by identifying nodes in which the static pressure head is less than h,,;, and

multiplying the total amount of head violation by a hydraulic penalty coefficient, ay,4:

Ny,

Chyd,i, = Ahyd Z(hmin - hiN) | hiy < hnin (30)
1

To allow for a hydraulic penalty coefficient to produce similar results in both small-scale (inexpensive) network and

a large-scale (more expensive) cases, the hydraulic penalty coefficient is made directly proportional to the average solution
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cost. With each generation, ay, is updated by multiplying the normalized penalty coefficient, ayyq norm. DY the average pipe

cost of the population,

Ne
21 Cpipe,ic (31)

Apyd = Anyd,norm N
c

The algorithm then selects candidates to be carried into the next generation through a proportionate selection method, where
each candidate has a probability of being selected, ps,, ; in direct proportion to its fitness relative to the sum of all fitness values
in the population
fi
=N (32)
1 i

The algorithm replaces the parent generation with a generation of equal size and tends to select more fit individuals in

psel,i

successive generations. In this study, the genetic algorithm parameters used were pp,,.; = 0.02, N, = 50, pyoper = 0.5,
Ngen = 100, apyanorm = 0.1. The first four of these parameters were chosen based on typical values presented in the literature
and then tuned with a sensitivity analysis for the first test case. Simspon et al. (1994) present typical values for N, (30 - 200),
DPxover (0.7 - 1.0), py, (0.01 - 0.05), and Ny, (100 - 1000). The normalized hydraulic penalty coefficient, anyqnorm, Was
chosen such that the GA converged on solutions which tended to satisfy the minimum static pressure constraint, but still

allowed the population to gravitate towards smaller diameters with static pressures close to h,,i,.

5 Cases Studied

Five cases were studied based on actual GDWN in Panama, Nicaragua, and the Philippines. Global characteristics of
each network are presented in Table 1 and the details of each network are presented in Table 3(a)-(e). Each network is a
branching type without loops. The total lengths of the networks range from less than 1 km to over 15 km. Two serial networks
are tested to demonstrate the effect of a local high point on the algorithm solutions. Elevation plots for each case are shown in
Fig. 5.

The choice of h,,;, is not standardized, and should appropriately balance the risk of negative pressure in pipes and
the increase in network cost due to the requirement of using larger diameters. The choice of h,,;,, in GDWN design is typically
in the range of 5 m — 20 m (Arnalich 2010; Bouman 2014; Swamee and Sharma 2008). In the present study hmin = 7 m, although
this requirement was reduced at selected nodes at the beginning of networks where changes in elevation are still small. At the
source node, the static pressure head is fixed at atmospheric pressure. All cases assumed minor-lossless flow, although all
algorithms (e.qg., Eq. (18) for CB-Theor) are capable of handling minor loss coefficients through the equivalent length method

as presented above.
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6 Mapping the Theoretical D to Discrete Pipe Sizes

The mapping between continuous diameters and the discrete nominal pipe sizes was accomplished in our solution by
one of the following ways:

1. For small and moderate size networks, the designer may manually adjust the pipe sizes (downward, normally one
pipe size) starting from the first link downstream from the source and continuing along the rest of the distribution
main to the end. A nearby plot of the static pressure heads compared with the theoretical Dj; from our CB approach
(on the same Mathcad page) will highlight the acceptability or unacceptability of any change. This exercise also
gives the designer an understanding of the sensitivity of the design to small changes in pipe sizes.

2. Based on the theoretical Dj; from the CB approach, a composite pipeline can be created for each link. That is, the
lengths for the two discrete pipes sizes that bound the theoretical Dj; from above and below are calculated such that
the pressure drop between two consecutive nodes in the distribution main matches between the composite pipeline

and the CB approach. This also provides discrete pipe sizes that nearly matches the CB solution in terms of cost.

7 Results

The current study evaluated three types of algorithms that optimize the design of gravity-driven water networks
(GDWN). The algorithms include a calculus-based (CB) algorithm, a backtracking algorithm (BT), a modified backtracking
version (BT-NoUp), and a genetic algorithm (GA). The algorithms were applied to five test cases that are based on real
GDWNE.

The global optimum network cost, found with BT, is shown in Table 2. The costs of solutions from all other algorithms
are expressed as a percentage difference in cost from the global optimum cost. To visually compare the algorithm solutions,
the hydraulic grade lines from BT, BT-NoUp, CB-Theor, and CB-Disc are presented in Fig. 5 along with the network elevation
for each test case. For clarity, the hydraulic grade lines of branch links are omitted from the figure. In addition, the GA solutions
are omitted since 100 solutions were obtained for each test case. Collectively, the hydraulic grade lines reveal a close alignment
of the BT solution (the global optimum) with the CB-Theor solution which utilizes a continuous diameter set. Furthermore,
the mapping scheme used to generate a CB-Disc solution is shown to increase pipe sizes in some cases far beyond the limit
imposed by h,,;,, which was set to 7 m in the present work.

In practice, a GDWN must be designed with pipe diameters that are selected from a discrete, commercially available
set. With a given number of network links, N, and a number of available diameters, N, a total of N[,VL candidate solutions
exist, yet with only one global optimum (except in the case of no viable solutions or unique solutions with identical costs). For
example, a GDWN of 20 links and 13 commercially available pipe sizes will, in principal, produce approximately 1.9x102%2

candidate solutions.
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BT is able to find the global optimum without needing to check all of the possible solutions by using a set of rules to
prune infeasible and sub-optimal candidates. In this study, BT evaluated only a fraction of the candidate solutions, where the
fraction ranged from 4x10718 to 7x10~*. To further reduce the number of evaluations required to arrive at a solution, the BT
algorithm was modified (BT-NoUp) to prune all solutions that include a smaller diameter that is upstream of a larger diameter.
This criterion, which seems intuitive to the designer, may actually miss the global optimum due to trade-offs associated with
discrete solutions. In fact, BT-NoUp missed the global optimum in cases 2 and 3, although by a small percentage increase in
cost (2.1% and 0.35% respectively). BT-NoUp, however, finished its search in a shorter amount of time in comparison to BT.
Using a Dell Latitude (i5 CPU at 2.50 GHz), the time to evaluate one candidate for both BT and BT-NoUp was around 0.2 ms.
In addition to approximately 2 s of pre-processing time, the computation times for BT ranged from 0.08 s (case 1) to 79 s (case
3), while BT-NoUp ranged from 0.06 s (case 4) to 0.3 s (case 3). The number of available diameters used in the BT, BT-NoUp,
and GA runs are listed in Table 1.

The CB algorithm, unlike the other algorithms in this work, finds a solution with theoretical diameters that are drawn
from a continuous domain (CB-Theor). For all test cases, the costs of the CB-Theor solutions was less when compared with
the discrete-diameter global optimum (-5.46% to -2.60%). In fact, because of the discrete pipe sizes needed for an actual
network, the continuous model will always produce the smallest theoretical cost for the network. The CB algorithm then maps
this solution to a commercially-available discrete set (CB-Disc). The mapping process used in this study simply mapped each
theoretical diameter to the nearest available diameter of a larger size, thus producing a solution which still satisfies static head
requirements but with a higher associated material cost. This tended to oversize the diameters, although the CB-Disc solutions
were always within two diameters of the BT global optimum solutions, as shown in Fig. 6. From all of the test cases combined,
all but one (71 out of 72) of the diameter selections were within one diameter of the global optimum. More sophisticated
mapping schemes, like independently adjusting D for each link in the distribution main in a step-by-step manner starting with
the source while ensuring all pressure head constraints are satisfied, would more likely produce results identical to the global
optimum. This was not performed in the current study. The CB-Disc solution costs were, in all cases, larger than the global
optimum, with a percentage difference ranging from 3.86% to 22.6%. Thus, for all cases, the calculus-based algorithm bounded
the cost of the global optima with a lower-cost CB-Theor solution and a higher-cost CB-Disc solution. This trend is a result of
the additional constraints imposed by the finite set of diameter choices. If the algorithm is allowed a greater number of discrete
diameter choices, i.e., through adding a less-common nominal diameter size to the available set, the cost of the CB-Disc
solution would approach the CB-Theor solution. For all cases, the CB algorithm converged on a solution in 5 minutes or less.

GA was run on each case a total of 100 times, each run itself produced 100 generations of 50 candidates. The least-
cost candidate in that did not violate the static pressure head condition was chosen as the optimum. Because GA is a stochastic
search algorithm producing different results from run-to-run, the costs of the optima from all 100 runs were averaged, with
this averaged value presented in Table 2 as a percentage increase from the global optimum. Out of the 100 GA runs for each

test case, nearly all runs failed to achieve the global optimum, with the exception of 8 runs of the Kiangan network. On a Dell
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Latitude (i5 CPU at 2.50 GHz), GA runs took between 0.9 s (case 1) and 1.2 s (case 3), not including about 2 s of pre-processor
time. We note that many variations of GAs have been reported in the literature and several of these would likely improve upon
the GA results obtained in this study. Potential improvements to the GA a self-adapting penalty function (Wu and Walski
2005), the use of elitism to preserve the best solutions (Kadu et al. 2008), and a reduction in the search space (Kadu et al.
2008). Other reported improvements, including the systematic optimization of operator parameters (Reed et al. 2000) and
scaling of the fitness function to magnify the rewards towards slightly fitter candidates (Dandy et al. 1996) were attempted in
a less systematic way (le. a parameter tuning study and three attempts at scaling the fitness function with an increasing
exponent), but these did not result in a noticeable on performance. However, it is possible that if these techniques were followed
systematically in full, the GA performance may have been improved. Still, the GA algorithm presented has undergone
reasonable attempts to adapt its design and parameters for real-world GDWN cases, and therefore presents a useful point of

comparison to the BT and CB algorithms.

8 Conclusions

Algorithms to optimize the cost of branching gravity-driven water networks are evaluated on five test cases from real
networks in the Philippines, Nicaragua, and Panama. A calculus-based algorithm produced a solution composed of theoretical
diameters from a continuous set (CB-Theor), which are then mapped onto discrete commercially available diameters (CB-
Disc). Backtracking (BT), a recursive algorithm, systematically searches discrete candidate solutions and is guaranteed to find
the global optimum by following rules that prune only higher-cost or hydraulically infeasible candidates. The BT algorithm
was modified (BT-NoUp) to improve computational speed by also rejecting all candidates that included a small diameter
directly upstream of a larger diameter. This criterion allowed BT-NoUp to prune more candidate solutions but allowed for the
possibility of missing the global optimum. The third type of algorithm evaluated was a genetic algorithm (GA) that used single-
point crossover and proportionate selection

BT was able to find the global optimum in all test cases with relatively little computational effort, and could be applied
to other GDWNSs composed of a similar number of links. In addition, while BT-NoUp completed its search in less time than
BT, the time required to complete BT would not be burdensome on a designer and therefore BT-NoUp did not produce a
compelling relative advantage over BT. BT, however, could become prohibitively time-consuming when dealing with
networks with significantly more links, as would be the case with large urban networks. While the test cases represent the
range of GDWN sizes encountered in the authors’ experience, future work would be needed to verify the suitability of the BT
and BT-NoUp algorithms on other large GDWNSs. The calculus-based algorithm produced consistently good results for the
networks tested, although a more robust mapping scheme from theoretical diameters to discrete diameters would further
improve on these results as discussed above. In potential future work, the CB-Theor solutions could be used to prune the BT

search space, similar to Kadu et al. (2008), by only including the two diameters above and below the CB-Theor diameters,

20



10

15

20

25

30

producing four diameter choices per link. The calculus-based methodology provides an additional benefit to the designer by
explicitly revealing the sensitivities to cost for a design. The calculus-based algorithm requires greater computational effort
than backtracking for smaller networks, however, this effort scales more linearly with the number of network links, while
backtracking scales exponentially. Furthermore, backtracking’s computational time is sensitive to the number of available
diameters. Still, when applied to GDWNs with a similar number of links to the test cases, backtracking can quickly find a
global optimum. In addition, because it is guaranteed to find the global optimum, it can be useful for benchmarking the
performance of other algorithms which scale better with more network links. While the genetic algorithm produced solutions
with decent closeness to the global optimum, run-to-run results vary due to the stochastic nature of the algorithm. Overall, the
genetic algorithm as implemented did not produce results which deemed it compelling over deterministic methods as applied
to GDWNs. However, for more complex networks and problem formulations, a genetic algorithm may be more advantageous.
In this case, the present study’s GA could be greatly improved on through many improvements reported in the literature
(Nicklow et al. 2010).

For all test cases, the calculus-based algorithm’s theoretical diameter solutions (CB-Theor) produced a lower cost
than the discrete-domain global optimum. This result is made possible because of it is not constrained to a discrete set of
diameters. As such, the CB-Theor results represent a lower-bound on the optimum solution within the problem formulation,
which could be approached with a finer selection of pipe diameters.
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Table 1: Characteristics of Test Cases.

Number of

. Number of Qtot Lot
Test Case Type Dclﬁmgéir Links (Ls?) (km)

1. Kiagan, Philippines Branching 8 9 4.37 0.82
2. Los Modulus, Nicaragua  Serial 4 13 0.39 1.24
3. Cafazas, Panama Branching 10 23 6.29 15.2
4. San Miguel, Nicaragua Serial 9 10 0.40 1.18
5. El Guabo, Nicaragua Branching 12 17 17.7 4.71
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Table 2: Solution Costs.

Test Case

Global Optimum

Percentage cost increase from global optimum

BT BT-NoUp CB-Theor CB-Disc GA
1. Kiagan, Philippines $ 2331 0 -3.16 11.3 4.80
2. Los Modulos, Nicaragua $ 1441 2.10 -2.60 22.6 12.1
3. Cafiazas, Panama $ 72,190 0.35 -5.46 17.0 20.7
4. San Miguel, Nicaragua $ 5418 0 -4.54 3.86 6.20
5. El Guabo, Nicaragua $ 61,445 0 -3.16 20.2 13.3
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Table 3(a): Case #1 Kiangan network properties, diameter (D) results (inch nominal sizes, with CB-Theor in inches), and nodal h.

Network

D solutions

h (m)

Link 1-2
Length (m) 76
Q (L/s) 4.37
Az (m) 14.0
BT 3
BT-NoUp 3
CB-Theor 2.751
CB-Disc 3
Node 1
BT 0
BT-NoUp 0
CB-Theor 0
CB-Disc 0

2-3

113
3.68
1.0

2-%
2-%
2.562
3

13.09
13.09
12.48
13.09

3-4
19
2.94
0.0

2.141
2-%

11.43
11.43
11.24
13.15

4-5
54
1.46
0.0

10.72
10.72
10.65
12.85

5-6
75
0.69
-1.0

2-7
80
0.69
0.0

1-% 1

1-% 1
1.356 1.062

1-Ys  1-Ya

5 6
8.81 7.10
8.81 7.10
9.61 7.00
12.27 9.78

3-8
99
0.74
-2.0

4-9
170
1.48
3.0

1-Y% 1%
1-Y% 1%
1.376 1.584
1-Y% 1%

7 8
727 7.21
727 121
6.99 7.00
1151 8.94

5-10
135

0.77
2.0

1-Ya
1Y,

1.128

1-Ya

7.57
7.57
7.00
9.70

10
7.58
7.58
3.19

11.04
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Table 3(b): Case #2 Los Modulos network properties, diameter (D) results (inch nominal sizes, with CB-Theor in inches), and nodal h.

Network

D solutions

h (m)

Link

Length (m)

Q(L5s)
Az (m)

BT
BT-NoUp
CB-Theor
CB-Disc

Node

BT
BT-NoUp
CB-Theor
CB-Disc

1-2 23
60 41
0.39 0.39
112 -05
1 1
1 1
0.987 0.984
1 1
1 2
0 9.55
0 9.55
0 9.00
0 9.55

3-4
108
0.39
3238

Ya

1
0.849

1

7.94
7.94
7.00
7.94

45
46
0.39
-3.7

Vs

0.849

31.59
37.82
31.86
37.82

5-6
134
0.39
36.6

Ya

0.849

24.00
32.88
24.78
32.88

6-7
153
0.39
-2.3

Ya
Y,
0.849

49.25
65.85
51.53
65.85

7-8
79
0.39
15.7

Ya
0.849

33.99
50.59
37.98
59.41

8-9
157
0.39
-6.8

Ya
Y,
0.849

47.55
59.60
47.87
72.98

9-10 10-11 11-12 12-13 13-14

90
0.39
7.3

Vs
0.849

27.45
39.50
29.53
61.93

32
0.39
7.4

Ya
0.849

10
32.32
39.18
30.21
66.80

102
0.39
45

120
0.39
-1.2

Ya Ya
Ya Ya
0.849 0.849
1 1

11 12
2405 19.91
29.07 24.93
20.46 17.46
58.53 60.27

117
0.39
8.4
Ya
Vs
0.849
1
13 14
855 7.04
13.56 12.05
7.44 7.23
55.83 61.06
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Table 3(c): Case #3 Cafiazas network properties, diameter (D) results (inch nominal sizes, with CB-Theor in inches), and nodal h.

Network

D solutions

h (m)

Link 1-2
Length (m) 646
Q (Ls) 6.29
Az (m) 25.0
BT 4
BT-NoUp 4
CB-Theor 3.530
CB-Disc 4
Node 1
BT 0
BT-NoUp 0
CB-Theor 0
CB-Disc 0

2-3 34
275 957
549 5.39
389 119

3 3
4 4
3.531 3.333
4 4

2 3
21.1 554
21.1 588
17.8 543
21.1 588

4-5
509
5.34
421

515
66.4
55.6
66.4

5-6
1102
5.14
-22.9

91.3
106
91.9
106

6-7
291
2.84
32.3

51.7
66.6
56.7
78.8

7-8
1764
2.74
-29.9

2-%
2.698

82.5
97.4
86.3
110

8-9
1256
2.49
40.8

2-%
2-Y
2.579
3

43.9
42.8
40.3
70.9

9-10
2320
2.39
-3.0

2-Y5
2-%
2.548
3

69.8
68.8
69.0
106

10-11
1580
0.69
-14.7

1.862

10
41.4
40.4
441
94.4

11-12
2170
0.39

341

1-%
1-Ys
1.227
1-Y

11
221
21.0
219
75.1

12-13
1217
0.20
-7.6

1.011
1

12
40.0
39.0
27.9
93.0

2-14
160
0.80
-5.0

1-Y
1-Ya
1.283
1-Y

13
21.7
20.7
7.64
74.7

3-15
100
0.10
20.0

Y
Ya
0.325
Y

14
121
12.1
6.99
121

4-16
1250
0.05
-15.0

Yo
Ya
0.508
Yo

15
722
75.6
8.02
75.6

5-17
110

0.20
2.0

Y
Ya
0.404
Y

16
243
39.2
7.70
39.2

6-18
570

2.30

-12.0

2
1-%
1.678
2

17
82.2
97.1
7.98
97.1

7-19
180
0.10
14.0

Yo
Yo
0.343
Yo

18
26.1
9.5
7.72
53.1

8-20 9-21 10-22

1400 50 400
025 010 1.70
-60 50 -10
1 Yo 1-%
1 Yo 1-%
0.963 0.281 1.405
1 Yo 1-%
19 20 21
908 201 733
106 190 722
779 7.70 8.18
118 471 110

11-23
260
0.30
-13.0

1-Y
1-%
1.401
1-%

22
21.9
20.9
7.68
74.9

12-24
100
0.19
9.0

Y2
Ya
0.488
Y

23
7.81
7.43
7.69
61.4

24
39.7
38.7
7.71
92.7
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Table 3(d): Case #4 San Miguel network properties, diameter (D) results (inch nominal sizes, with CB-Theor in inches), and nodal h.

Network

D solutions

h (m)

Link 1-2
Length (m) 189
Q (L/s) 3.60
Az (m) 274
BT 3
BT-NoUp 3
CB-Theor 2.939
CB-Disc 3
Node 1
BT 0
BT-NoUp 0
CB-Theor 0
CB-Disc 0

2-3 34
168 139
3.60 3.60
107 -6.4

2.929 2.929
3 3

2 3
25.88 35.20
25.88 35.20
25.53 3451
25.88 35.20

4-5
81
3.60
6.1

27.68
27.68
26.72
27.68

5-6
32
3.60
-5.2

33.13
33.13
32.01
33.13

6-7
92
3.60
-18.6

2-%
2-Y%
2.929

27.70
27.70
26.51
27.70

7-8
225
3.60
33.2

7.02
7.02
7.00
8.37

8-9
115
3.60
58.2

9-10
52.3
3.60
-11.3

1-Ya

1-Y
1.462

1-%

43.86
43.86
32.93
67.54

10-11
85
3.60
329

1-Ya

1-Ya
1.368

1-Ya

10
13.19
13.19

6.96
47.02

11
14.60
14.60

7.02
48.43

29



Table 3(e): Case #5 El Guabo network properties, diameter (D) results (inch nominal sizes, with CB-Theor in inches), and nodal h.

Network

D solutions

h (m)

Link 1-2  2-3
Length (m) 383 486
Q (L/s) 17.72 14.68
Az (m) 109 10.0
BT 8 6
BT-NoUp 8 6
CB-Theor 6.875 6.408
CB-Disc 8 8
Node 1 2
BT 0 1034
BT-NoUp 0 1034
CB-Theor 0 9.76
CB-Disc 0 1034

3-4
1030

12.76
5.6

18.50
18.50
18.35
19.85

4-5 5-6
600 150
11.96 10.04
32 -26

6 6
6 6
6.008 5.691
6 6

4 5
991 1153
991 1153
9.93 11.49
13.47 15.09

6-7 7-8
400 187
7.72 6.60
57 41

5 5
5 5
4.800 4.576

6 7
8.61 13.16
8.61 13.16
8.46 1270
12.17 16.72

8-9

450
3.12
4.2

8.65
8.65
7.94
12.21

9-10
227
1.20
-3.1

12.11
12.11
10.67
15.67

2-11 3-12
230 240
3.04 192
20 25

2-% 1Y%
2-%2 1%
2.364 1.608
2-% 1Y%

10 11
7.25 8.8
725 8.48
7.00 7.00
12.27 8.48

4-13
110
0.80
-1.2

1-%
1-%
1.529
1-%

12
7.23
7.23
7.00
8.58

5-14
270

1.92
2.0

1.932

13
7.35
7.35
7.00

10.91

6-15
130
2.32
-1.1

3.250

14
8.84
8.84
7.01

12.40

7-16 8-17 9-18
130 260 110
112 348 1.92
00 10 20

1-Ya 3 1-%
1-Y 3 1-%
1.395 3.076 1.647

1-% 4 2

15 16 17 18
703 7.16 7.68 7.80
703 7.16 7.68 7.80
700 7.00 700 7.01
10.94 13.84 12.67 15.76
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Figure 1: Element schematic of a GDWN.
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VA Source, h;=0

Figure 2: Three-pipe branch network.
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Figure 4. Bhave (1978) index notation at an internal node, j.
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Figure 5: Network elevation (z) and hydraulic grade lines (HGLs) of algorithm solution for main distribution links.
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Figure 6: Diameter sizes of calculus-based (CB-Disc) solutions above the global optimum solutions.
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