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Abstract 7 

Bivalve shells record changes in their environment in the chemical composition of their shells and are 8 

frequently used as paleoclimate archives. However, many studies have shown that physiological changes 9 

related to growth of the bivalve may overprint these chemical tracers. In the present study, a new approach is 10 

presented that models growth and development of bivalve shells without a priori knowledge of the physiology 11 

of the species. The model uses digitized growth increments in a cross section of the shell together with basic 12 

assumptions of the shape of the shell in order to model changes in shell length, thickness, volume, mass and 13 

growth rate at a daily resolution through the lifetime of the bivalve. This approach reconstructs the growth 14 

history of bivalves based on their shell without the need for a culture experiment, paving the way for growth 15 

rate estimations based on fossil bivalve shells. Combination of the growth model with 2D X-Ray Fluorescence 16 

trace element mapping allows the incorporation of trace elements into the shell to be modelled in 3D through 17 

the bivalve’s lifetime. This approach yields records of integrated total-shell trace element concentrations and 18 

accumulation rates, which shed light on the rates and mechanisms by which these trace elements are 19 

incorporated into the shells of bivalves. Application of growth and trace element modelling on a set of modern 20 

pacific oyster shells of well-known origin and comparison of model results with conventional trace element 21 

transects highlights the importance of considering heterogeneity in mineralogy, mineralization rates and 22 

chemical composition within the shells of bivalves. These insights lead to a better understanding of the 23 

complexity of trace element concentrations in bivalve shells, which can then be applied as proxies for the 24 

reconstruction of sub-annual changes in palaeoenvironmental conditions over geological timescales. 25 
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1. Introduction 27 

The study of climate and environmental change over geological timescales has yielded various important 28 

insights into the dynamics of climate systems on Earth (e.g. Huber et al., 1995; Hesselbo et al., 2000; Zachos et 29 

al., 2001; Wang et al., 2001; Sluijs et al., 2006). The knowledge about the sensitivity of Earth’s climate and 30 

environment that results from these studies is indispensable for the prediction of future changes in Earth’s 31 

climate. The study of environmental changes relies both on proxy-based palaeoenvironmental reconstructions 32 

(e.g. McDermott, 2004; Leng and Marshall, 2004; Zachos et al., 2006; Affek et al., 2008) and climate and 33 

environmental modelling based on, and calibrated with, these reconstructions (e.g. Barron et al., 1984; 34 

Kutzbach et al., 1989; Claussen et al., 2002; Andrews et al., 2012). Important archives for proxy-based 35 

reconstructions of palaeoenvironment on a high temporal resolution are fast-growing carbonate records such 36 

as speleothems and the fossil skeletal remains of calcifying organisms such as corals, brachiopods and molluscs 37 

(Goreau, 1977; de Winter and Claeys, 2017; Ullmann et al., 2017; Vansteenberge et al., CHEMGEO; de Winter 38 

et al., PPP). Mollusc shells have gained much attention in the last decades, because the calcite in these shells 39 

has high fossilization potential, their populations are abundant and several studies have shown that chemical 40 

proxies in these shells record changes in their environment (e.g. Klein et al., 1997; Schöne et al., 2003; Lazareth 41 

et al., 2003; Gillikin et al., 2008). Stable isotope ratios of carbon and oxygen in the calcite shells of bivalve 42 

molluscs are almost exclusively precipitated in equilibrium with the surrounding seawater and can thus be 43 

used to trace changes in temperature, productivity and salinity on a seasonal scale (KIein et al., 1996; Kirby et 44 

al., 1998; Goodwin et al., 2001; Ullmann et al., 2010). However, to disentangle the effects of these parameters 45 

and to properly understand changes in the local environment, it is important to apply multi-proxy studies of 46 

shell calcite (e.g. Takesue and van Geen, 2004; Ullmann et al., 2013; de Winter et al., PPP). It is for this reason 47 

that bivalve sclerochronology studies have focused on understanding the relationships of trace element 48 

concentrations in bivalve calcite with their environment (Lorrain et al., 2005; Wanamaker et al., 2008; Freitas 49 

et al., 2009; Schöne et al., 2011). Since then, a range of trace element ratios (e.g. Mg/Ca, Sr/Ca, Ba/Ca, Mn/Ca 50 

and Li/Mg) have been used as proxies for environmental parameters (Klein et al., 1996a; Lazareth et al., 2003; 51 

Carré et al., 2006; Gillikin et al., 2008; Füllenbach et al., 2015; Vihtakari et al., 2017). 52 

A few studies have focused on the development and chemical composition of modern oyster shells and its 53 

relation to the environment (e.g. Palmer and Carriker, 1979; Carriker et al., 1980; Lee et al., 2008; Surge and 54 

Lohmann, 2008; Ullmann et al., 2010; 2013). These studies have shown that oyster shells are composed mostly 55 

of calcite occurring as foliated calcite layers, prismatic calcite and chalky calcite while the myostracum and 56 

hinge ligament are made of aragonite (Stenzel, 1963; Palmer and Carriker, 1979). There is some discussion 57 

about the role of these calcite mineral phases, whether their precipitation is controlled by environmental 58 

conditions and whether changes in the precipitated mineral phase are paced to regular (solar or lunar) cycles 59 

(Carriker et al., 1980; Kirby et al., 1998; Surge et al., 2001; Ullmann et al., 2010). It has even been proposed 60 

that the mineralization of the chalky calcite phase in oyster shells is mediated by microbial activity (Vermeij, 61 

2014). Beside mineralogy and chemistry of the shell, shell growth rate and dimensions vary widely between 62 
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individuals in response to several environmental factors such as growth space, substrate, food availability and 63 

amount of predation (Galtsoff, 1964; Palmer and Carriker, 1979; Surge and Lohmann, 2008). 64 

All these physiological changes, such as variations in growth and metabolic rate, shell mineralogy and 65 

spawning events, which affect the incorporation of trace elements into the shell of bivalves, complicate the 66 

use of trace element records to complement environmental reconstruction by stable isotope 67 

sclerochronology, (Klein et al., 1996b; Gillikin et al., 2005; Immenhauser et al., 2005; Freitas et al., 2006). 68 

Furthermore, several studies have shown that rates by which trace elements are incorporated into bivalve 69 

shells and the degree to which these rates are controlled by environmental factors can be vastly different 70 

between different bivalve species (Reinfelder et al., 1997; Steuber, 1999; Richardson et al., 2004; Carré et al., 71 

2006). To constrain such variations in physiological parameters on the chemistry of bivalve shells, species-72 

specific culture experiments are carried out under controlled circumstances so relationships between 73 

environmental parameters and shell chemistry can be precisely determined (e.g. Wang and Fisher, 1996; 74 

Freitas et al., 2006; Gillikin et al., 2006). Such experiments can only be executed on extant bivalves, which 75 

severely limits the potential to apply the acquired proxy transfer functions to reconstruct climate and 76 

environment in pre-Cenozoic times (e.g. de Winter et al., PPP). In this study, a model is introduced that 77 

approximates the development of a range of size parameters in the bivalve shell through ontogenetic age, 78 

based solely on digitized coordinates of recognized annual shell increments in a longitudinal cross section 79 

through the shell. Additionally, the modelled growth development and recruitment pattern in the shell cross 80 

section is then superimposed on an XRF trace element map to model the incorporation of trace elements into 81 

the shell with age. The application of this growth and trace element model is demonstrated on a set of shells 82 

of the modern pacific oyster (Crassostrea gigas) with well-known origins and dimensions. Model results are 83 

compared with conventional trace element analyses on line scans through the hinge of the shells as well as 84 

with results from previous bivalve growth studies. 85 

2. Materials and Methods 86 

2.1 Specimen acquisition and preparation 87 

A set of eight modern pacific oyster (Crassostrea gigas) shells were obtained from restaurant Jardin van Gogh 88 

in Brussels, Belgium (http://www.jardinvangogh.be). The oysters originate from a cultivation area in coastal 89 

Normandy (France, 49°4.0’ N latitude and 1°35.47’ W longitude) and were harvested on February 13th 2017. 90 

The shells were rinsed with acetone (C3H5OH) and distilled water, cleaned superficially with a soft brush and in 91 

an ultrasonic bath and oven dried overnight at 50°C. Dried shells were weighed on a digital scales (σ = 0.01 g), 92 

their dimensions (shell length, maximum shell width, maximum shell thickness) were measured using digital 93 

callipers (σ = 0.01 mm) and their volume was determined by water displacement measurement using a graded 94 

cylinder. All shells were embedded in Araldite® 2020 epoxy resin (Huntsman, Basel, Switzerland), sectioned 95 

longitudinally along their axis of maximum growth using a slow rotating, diamond coated saw (Ø = 1 mm) and 96 

high-grade polished using silicon carbide polishing disks (up to P2400 grain size). Polished shell surfaces were 97 
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imaged by colour scanning (RGB) using an Epson® 1850 flatbed scanner (Seiko Epson Corp., Nagano, Japan) at 98 

a pixel resolution of 6400 dpi (± 4 µm pixel size). 99 

2.2 X-Ray Fluorescence measurements 100 

Concentrations of calcium (Ca), silicon (Si), magnesium (Mg), strontium (Sr), zinc (Zn), sulphur (S), phosphorous 101 

(P), manganese (Mn) and iron (Fe) were measured on the polished shell surfaces using a Bruker® M4 Tornado 102 

micro-X-ray Fluorescence scanner (Bruker GmbH, Berlin, Germany) equipped with a Rh X-Ray source using 103 

maximum energy settings (50 kV, 600 µA) with a spot size of 25 µm (Mo Kα) and two Silicon Drift detectors. 104 

The XRF setup is described in detail in de Winter and Claeys (2017). The entire shell surface was mapped semi-105 

quantitatively by XRF scanning in mapping mode using 1 ms integration time per pixel (as described in de 106 

Winter and Claeys, 2017). Spacing between pixels was chosen in such a way that the total amount of pixels per 107 

map was relatively constant (±4.0*106) for all shells while choosing the minimum rectangular area that 108 

contained the entire cross section area. This caused pixel spacing in maps to vary between 25 µm (interlocking 109 

X-Ray spots) and 30 µm. Quantitative XRF line scans were carried out on the dense foliated calcite layers in the 110 

hinges of all shells perpendicular to the growth layers (see Palmer and Carriker, 1979) using the point-by-point 111 

scanning method outlined in de Winter et al. (in review, PPP) with an integration time of 60 seconds per point. 112 

This integration time allowed enough count statistics for the instrument to reach the Time of Stable 113 

Reproducibility (TSR) and provide reproducible trace element concentrations for the elements of interest (de 114 

Winter et al., 2017). All XRF line scans were quantified using the Bruker Esprit® fundamental parameters (FP) 115 

quantification relative to the BAS CRM 393 limestone standard. Errors of reproducibility of µXRF 116 

measurements are generally higher than the instrumental error and depend on the integration time and the 117 

excitation energy of the element (see de Winter and Claeys, 2017; de Winter et al., 2017). Typical 118 

reproducibility errors of µXRF point measurements are reported in Table 3. 119 

2.3 Data preparation 120 

Concentrations (in µg/g) of trace elements were calculated for profiles measured using XRF and plotted using 121 

GrapherTM 8 (Golden Software Inc., Golden, CO, USA) graphing software. Timing of shell deposition was 122 

inferred from annual cyclicity in trace element profiles. Growth increments (lines of simultaneous deposition in 123 

the shell) were digitized on high-resolution colour scans of polished shell cross sections of the shells using the 124 

pen tool in Adobe Illustrator® CC 17.1.0 (Adobe Systems Inc., San Jose, USA). Outlines of the rectangular area 125 

of the cross section mapped by XRF were digitized in the same way. Line coordinates were saved in a SVG-file, 126 

which allowed X-and Y-coordinates of the lines to be extracted and ordered into a comma separated (CSV) file 127 

to be imported into the modelling script (Step 1 in Fig. 1). An example of a shell cross section with traced 128 

growth increments is shown in Figure 2. SVG- and CSV files of growth increments digitized in all shells used in 129 

this study are found in supplementary data 1. 130 

XRF map data was processed using Bruker Esprit® software. Maps were subject to a PCA-assisted maximum 131 

likelihood phase analysis using a selection of distinctive elements (Ca, Mg, Sr, P, S and Mn). Minimum phase 132 
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area was fixed to 0.05% of the total map area. Phase analysis results were matched with interpreted growth 133 

increments and high-resolution colour scans and associated phases were merged. Sum XRF spectra of all pixels 134 

in each phase were quantified relative to the BAS CRM 393 standard using Esprit® software. Minimum area of 135 

each phase was such that the total integration time contained in all the pixels allowed Time of Stable 136 

Reproducibility to be reached for the quantification of the sum spectrum (de Winter et al., 2017). Phase maps 137 

were exported as BMP files and oriented in the same way as colour scans with the shell hinge facing left and 138 

the inside of the shell facing down (see Fig. 2).  139 

2.4 Modelling approach 140 

A modelling routine was written in the open source computational software package R (R Core Team, 2013) 141 

using Microsoft® Visual Studio Code Version 1.10.2. Shell growth and trace element accumulation rates were 142 

modelled in six steps, of which Step 1 is a data preparation step (see above), Step 2-4 form the growth model 143 

and Step 5-6 make up the trace element model (Fig. 1). The complete R-script used for the model is provided 144 

in supplementary data 2. Variables used in the modelling process are indicated in Figure 3. 145 

 146 

2.4.1 Growth modelling 147 

Step 2 of the model converts X- and Y-coordinates of all digitized increments to millimetres using the ratio 148 

between the real length of the digitized image and the length in pixels. All increments are converted to one 149 

cross section matrix (Digitized cross section) with a common X-axis with a default step size (dx) using linear 150 

interpolation between line segments. The resulting cross section is plotted to provide a check on the model 151 

progress. From this matrix, the area between each increment and its predecessor is calculated using the 152 

formula: 153 

F1: 𝑶𝑶𝑶𝑶𝒊𝒊𝒊𝒊 =  ∫ 𝒀𝒀𝒀𝒀𝒊𝒊𝒊𝒊−𝟏𝟏𝟏𝟏(𝒙𝒙𝒙𝒙) − 𝒀𝒀𝒀𝒀𝒊𝒊𝒊𝒊(𝒙𝒙𝒙𝒙) 𝒅𝒅𝒅𝒅𝒙𝒙𝒙𝒙𝒙𝒙𝒙𝒙𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒅𝒅𝒅𝒅
𝒙𝒙𝒙𝒙𝟎𝟎𝟎𝟎

 (1) 154 

in which Oi is the area between increment i and increment i-1, x0 and xend are the extreme values of the range 155 

of X coordinates in Digitized cross section and Yi and Yi-1 are the Y-coordinates of increment i and i-1 156 

respectively. Yi-1 is always bigger than Yi since bivalves build their shell by adding material on the inside of the 157 

shell, which faces down in this model. The average shell thickness at each increment is determined using the 158 

formula: 159 

F2: 𝑻𝑻𝑻𝑻𝒊𝒊𝒊𝒊 =  
∑ 𝒀𝒀𝒀𝒀𝟎𝟎𝟎𝟎(𝒙𝒙𝒙𝒙)−𝒀𝒀𝒀𝒀𝒊𝒊𝒊𝒊(𝒙𝒙𝒙𝒙)𝒙𝒙𝒙𝒙𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒅𝒅𝒅𝒅
𝒙𝒙𝒙𝒙𝟎𝟎𝟎𝟎

𝒙𝒙𝒙𝒙𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒅𝒅𝒅𝒅− 𝒙𝒙𝒙𝒙𝟎𝟎𝟎𝟎
  (2) 160 

in which Ti is the average thickness of the shell at increment i, Yi(x) and Y0(x) are the Y-coordinates of 161 

increment i and the top of the shell (increment 0). Total shell length is calculated from the X- and Y-162 

coordinates of the start- and endpoints of the increment (where the increment meets the top or bottom of the 163 

shell) and the Pythagorean Theorem following the formula:  164 

F3: 𝑳𝑳𝑳𝑳𝒊𝒊𝒊𝒊 =  �(𝒙𝒙𝒙𝒙𝒆𝒆𝒆𝒆 − 𝒙𝒙𝒙𝒙𝒔𝒔𝒔𝒔)𝟐𝟐𝟐𝟐 + (𝒀𝒀𝒀𝒀𝒆𝒆𝒆𝒆 − 𝒀𝒀𝒀𝒀𝒔𝒔𝒔𝒔)𝟐𝟐𝟐𝟐 (3) 165 
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in which Li is the length of the shell at increment i, xs, xe, Ys and Ye are the X- and Y-coordinates of the start- and 166 

endpoints of the increment i. The results of these calculations, as well as values for xs, xe, Ys and Ye are stored 167 

in a Matrix of parameters by increment. 168 

Step 3 of the growth model takes Digitized cross section, Matrix of parameters by increment and a 169 

customizable number of increments (N) to be interpolated to create a new cross section matrix with N-1 170 

interpolated sub-increments between each set of increments (Sub-incremental cross section). Interpolation of 171 

sub-increments is done by linear interpolation of the Y-coordinate of sub-increments between that of the two 172 

increments (see insert in Figure 3A) according to the following formula: 173 

F4.1: ��𝒀𝒀𝒀𝒀𝒕𝒕𝒕𝒕(𝒙𝒙𝒙𝒙) = 𝒀𝒀𝒀𝒀𝒊𝒊𝒊𝒊−𝟏𝟏𝟏𝟏(𝒙𝒙𝒙𝒙) − 𝒆𝒆𝒆𝒆
𝑵𝑵𝑵𝑵
∗ �𝒀𝒀𝒀𝒀𝒊𝒊𝒊𝒊−𝟏𝟏𝟏𝟏(𝒙𝒙𝒙𝒙) − 𝒀𝒀𝒀𝒀𝒊𝒊𝒊𝒊(𝒙𝒙𝒙𝒙)��

𝒆𝒆𝒆𝒆=𝟎𝟎𝟎𝟎

𝒆𝒆𝒆𝒆=𝑵𝑵𝑵𝑵−𝟏𝟏𝟏𝟏
�
𝑥𝑥𝑥𝑥=𝑥𝑥𝑥𝑥0

𝑥𝑥𝑥𝑥=𝑥𝑥𝑥𝑥𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
 (4) 174 

With 175 

F4.2: 𝒕𝒕𝒕𝒕 = 𝒊𝒊𝒊𝒊 − 𝟏𝟏𝟏𝟏 + 𝒆𝒆𝒆𝒆
𝑵𝑵𝑵𝑵

 (5) 176 

in which Yt(x) is the Y-coordinate of the nth sub-increment between increment i and increment i-1 and x0 and 177 

xend are the extreme values of range of X-values in Digitized cross section (as in F1). All calculated values for 178 

Yt(x) are stored with reference to their sub-increment number (t) and X-coordinate in the new Sub-incremental 179 

cross section matrix. The resulting cross section is plotted to provide a check on the model progress. This new 180 

matrix is then used to calculate area between sub-increments, shell thickness and total shell length during 181 

deposition of each sub-increment by formula F1, F2 and F3 respectively. Additionally, using the measured 182 

maximum length (Shell length) and width (Shell width) of the oyster, parameters a and b of the ellipse that 183 

forms the base of the shell for volume calculations (Figure 3B) are calculated according to formulae: 184 

F5.1: 𝒂𝒂𝒂𝒂𝒕𝒕𝒕𝒕 = 𝟏𝟏𝟏𝟏
𝟐𝟐𝟐𝟐
∗ 𝑾𝑾𝑾𝑾𝒎𝒎𝒎𝒎𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂
𝑳𝑳𝑳𝑳𝒎𝒎𝒎𝒎𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂

∗ (𝒙𝒙𝒙𝒙𝒆𝒆𝒆𝒆 − 𝒙𝒙𝒙𝒙𝒔𝒔𝒔𝒔) (6) 185 

F5.2: 𝒃𝒃𝒃𝒃𝒕𝒕𝒕𝒕 = 𝟏𝟏𝟏𝟏
𝟐𝟐𝟐𝟐
∗ (𝒙𝒙𝒙𝒙𝒆𝒆𝒆𝒆 − 𝒙𝒙𝒙𝒙𝒔𝒔𝒔𝒔) (7) 186 

in which at and bt are the parameters a and b of the ellipse that forms the base of the shell at sub-increment t, 187 

Lmax and Wmax are the maximum length and width of the oyster shell and xs and xe are the X-coordinates of the 188 

start- and endpoints of the increment t (as in F3). All these parameters are stored in Matrix of parameters by 189 

sub-increment (Figure 1). 190 

Step 4 takes Incremental cross section and the ellipse parameters in the Matrix of parameters by sub-191 

increment to calculate the Z-values of the ellipse that forms the base of the shell at each sub-increment (see 192 

Figure 3B). The Z-value is defined as the distance between the edge of the ellipse and the X-axis through the 193 

shell (Figure 3B), and is calculated by the following formula, which is an adaptation of the standard formula for 194 

ellipsoids: 195 

F6.1: �𝒁𝒁𝒁𝒁𝒕𝒕𝒕𝒕(𝒙𝒙𝒙𝒙)
𝒂𝒂𝒂𝒂𝒕𝒕𝒕𝒕
�
𝟐𝟐𝟐𝟐

+ �𝒙𝒙𝒙𝒙
∗
𝒕𝒕𝒕𝒕

𝒃𝒃𝒃𝒃𝒕𝒕𝒕𝒕
�
𝟐𝟐𝟐𝟐

= 𝟏𝟏𝟏𝟏 → 196 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2017-137
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 27 June 2017
c© Author(s) 2017. CC BY 4.0 License.
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F6.2: 𝒁𝒁𝒁𝒁𝒕𝒕𝒕𝒕(𝒙𝒙𝒙𝒙) = �𝒂𝒂𝒂𝒂𝒕𝒕𝒕𝒕
𝒃𝒃𝒃𝒃𝒕𝒕𝒕𝒕
� ∗ �𝒃𝒃𝒃𝒃𝒕𝒕𝒕𝒕

𝟐𝟐𝟐𝟐 − 𝒙𝒙𝒙𝒙∗𝒕𝒕𝒕𝒕𝟐𝟐𝟐𝟐  (8) 197 

in which Zt is the Z-value (distance from X-axis) of the ellipse at X-coordinate x*t for sub-increment t, at and bt 198 

are the parameters of the ellipse at sub-increment t and x*t is the X-coordinate relative to the centre of the 199 

ellipse, and is calculated by 200 

F6.3 𝒙𝒙𝒙𝒙∗𝒕𝒕𝒕𝒕 = 𝒙𝒙𝒙𝒙 − 𝒙𝒙𝒙𝒙𝒔𝒔𝒔𝒔 − 𝒃𝒃𝒃𝒃𝒕𝒕𝒕𝒕  (9) 201 

All Z-values are saved in a matrix (Z-values in Figure 1) with reference to their increment numbers (t) and X-202 

coordinates. Then, using the Z-values and the parameters from Matrix of parameters by sub-increment, shell 203 

volume is calculated for each sub-increment. This is done by calculating areas between the sub-increment and 204 

the top of the shell (sub-increment 0) in a cross sections through the shell perpendicular to the X-axis (in YZ-205 

plane, see Figure 3C) and multiplying these with the step size in X-direction (dx). This is done for every X-value, 206 

and adding up all volume increments yields an estimate the total volume between the shell sub-increment and 207 

the base of the shell: 208 

F7.1: 𝑽𝑽𝑽𝑽𝒕𝒕𝒕𝒕 = ∫ �𝑨𝑨𝑨𝑨𝟎𝟎𝟎𝟎(𝒙𝒙𝒙𝒙) − 𝑨𝑨𝑨𝑨𝒕𝒕𝒕𝒕(𝒙𝒙𝒙𝒙)�𝒅𝒅𝒅𝒅𝒙𝒙𝒙𝒙𝒙𝒙𝒙𝒙𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒅𝒅𝒅𝒅
𝒙𝒙𝒙𝒙𝟎𝟎𝟎𝟎

 (10) 209 

in which Vt is the volume of the shell at increment t and 𝑨𝑨𝑨𝑨𝟎𝟎𝟎𝟎(𝒙𝒙𝒙𝒙) and 𝑨𝑨𝑨𝑨𝒕𝒕𝒕𝒕(𝒙𝒙𝒙𝒙) are the area under increment t and 210 

the top of the shell (increment 0) respectively in the cross section in YZ-direction (Figure 3C). These areas are 211 

modelled for every X-value by constructing a circle section through the corresponding point on the sub-212 

increment in the XY cross section (centre of the YZ-cross section Figure 3A, or point P1) 213 

P1[x, y1, z1] = [x, Yt(x), 0]  (11) 214 

and the two points where the YZ-cross section intersects the ellipse that forms the base of the shell (see Figure 215 

3A and Figure 3C):  216 

P2[x, y2, z2] = [x, Yellipse(x), -Zt(x)] (12) 217 

P3[x, y3, z3] = [x, Yellipse(x), Zt(x)] (13) 218 

The value Yellipse(x) is the Y-value of the ellipse with respect to the line y=0 (Figure 3C), which can be calculated 219 

by linear interpolation of the slope of the ellipse using the start and end points of the sub-increment (xs, xe, Ys 220 

and Ye) and x: 221 

F7.2: 𝒀𝒀𝒀𝒀𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒊𝒊𝒊𝒊𝒆𝒆𝒆𝒆𝒔𝒔𝒔𝒔𝒆𝒆𝒆𝒆 = 𝒀𝒀𝒀𝒀𝒔𝒔𝒔𝒔 + �𝒀𝒀𝒀𝒀𝒆𝒆𝒆𝒆−𝒀𝒀𝒀𝒀𝒔𝒔𝒔𝒔
𝒙𝒙𝒙𝒙𝒆𝒆𝒆𝒆−𝒙𝒙𝒙𝒙𝒔𝒔𝒔𝒔

� ∗ (𝒙𝒙𝒙𝒙 − 𝒙𝒙𝒙𝒙𝒔𝒔𝒔𝒔) (14) 222 

The centre of this circle is the point 223 

Pc[x, yc, zc] = [x, Yc, 0] (15) 224 

its radius r is equal to the difference between Yt(x) and Yc, and the circle can be described by the formulae: 225 

F7.3: ∆𝒚𝒚𝒚𝒚𝟐𝟐𝟐𝟐 + ∆𝒛𝒛𝒛𝒛𝟐𝟐𝟐𝟐 =  𝒓𝒓𝒓𝒓𝟐𝟐𝟐𝟐 → 226 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2017-137
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 27 June 2017
c© Author(s) 2017. CC BY 4.0 License.
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F7.4: (𝒚𝒚𝒚𝒚𝟏𝟏𝟏𝟏 − 𝒚𝒚𝒚𝒚𝒄𝒄𝒄𝒄)𝟐𝟐𝟐𝟐 + (𝒛𝒛𝒛𝒛𝟏𝟏𝟏𝟏 − 𝒛𝒛𝒛𝒛𝒄𝒄𝒄𝒄)𝟐𝟐𝟐𝟐 = (𝒚𝒚𝒚𝒚𝟑𝟑𝟑𝟑 − 𝒚𝒚𝒚𝒚𝒄𝒄𝒄𝒄)𝟐𝟐𝟐𝟐 + (𝒛𝒛𝒛𝒛𝟑𝟑𝟑𝟑 − 𝒛𝒛𝒛𝒛𝒄𝒄𝒄𝒄)𝟐𝟐𝟐𝟐 → 227 

F7.5: �𝒀𝒀𝒀𝒀𝒕𝒕𝒕𝒕(𝒙𝒙𝒙𝒙) − 𝒀𝒀𝒀𝒀𝒄𝒄𝒄𝒄(𝒙𝒙𝒙𝒙)�𝟐𝟐𝟐𝟐 + (𝟎𝟎𝟎𝟎 − 𝟎𝟎𝟎𝟎)𝟐𝟐𝟐𝟐 = �𝒀𝒀𝒀𝒀𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒊𝒊𝒊𝒊𝒆𝒆𝒆𝒆𝒔𝒔𝒔𝒔𝒆𝒆𝒆𝒆(𝒙𝒙𝒙𝒙) − 𝒀𝒀𝒀𝒀𝒄𝒄𝒄𝒄(𝒙𝒙𝒙𝒙)�
𝟐𝟐𝟐𝟐

+ (𝒁𝒁𝒁𝒁𝒕𝒕𝒕𝒕(𝒙𝒙𝒙𝒙) − 𝟎𝟎𝟎𝟎)𝟐𝟐𝟐𝟐 → 228 

F7.6: 𝒀𝒀𝒀𝒀𝒄𝒄𝒄𝒄(𝒙𝒙𝒙𝒙) = �𝒀𝒀𝒀𝒀𝒕𝒕𝒕𝒕(𝒙𝒙𝒙𝒙)𝟐𝟐𝟐𝟐−𝒀𝒀𝒀𝒀𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒊𝒊𝒊𝒊𝒆𝒆𝒆𝒆𝒔𝒔𝒔𝒔𝒆𝒆𝒆𝒆(𝒙𝒙𝒙𝒙)𝟐𝟐𝟐𝟐−𝒁𝒁𝒁𝒁𝒕𝒕𝒕𝒕(𝒙𝒙𝒙𝒙)𝟐𝟐𝟐𝟐�

𝟐𝟐𝟐𝟐∗�𝒀𝒀𝒀𝒀𝒕𝒕𝒕𝒕(𝒙𝒙𝒙𝒙)−𝒀𝒀𝒀𝒀𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒊𝒊𝒊𝒊𝒆𝒆𝒆𝒆𝒔𝒔𝒔𝒔𝒆𝒆𝒆𝒆(𝒙𝒙𝒙𝒙)�
      (16) 229 

F7.7: 𝒓𝒓𝒓𝒓𝒕𝒕𝒕𝒕(𝒙𝒙𝒙𝒙) = �𝒁𝒁𝒁𝒁𝒕𝒕𝒕𝒕(𝒙𝒙𝒙𝒙)𝟐𝟐𝟐𝟐 + �𝒀𝒀𝒀𝒀𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒊𝒊𝒊𝒊𝒆𝒆𝒆𝒆𝒔𝒔𝒔𝒔𝒆𝒆𝒆𝒆(𝒙𝒙𝒙𝒙) − 𝒀𝒀𝒀𝒀𝒄𝒄𝒄𝒄(𝒙𝒙𝒙𝒙)�
𝟐𝟐𝟐𝟐

     (17) 230 

With all parameters known, the area in the YZ-cross section under the sub-increment (between the circle 231 

segment and the line y=0) can be calculated as the area of the section of the circle above the ellipse plus the 232 

area of the rectangle between the ellipse and y=0 (Figure 3C). The angle θ describing this circle section is equal 233 

to: 234 

F7.8: 𝜽𝜽𝜽𝜽 = 𝟐𝟐𝟐𝟐 ∗ 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬−𝟏𝟏𝟏𝟏 �𝒁𝒁𝒁𝒁𝒕𝒕𝒕𝒕(𝒙𝒙𝒙𝒙)
𝒓𝒓𝒓𝒓𝒕𝒕𝒕𝒕(𝒙𝒙𝒙𝒙)

� (18) 235 

However, if point P1 lies below the ellipse (Yt(x) < Yellipse(x); in the case of irregular shells that curve upwards 236 

during growth), the centre of the circle lies above the shell and the area under the sub-increment is described 237 

by subtracting the section of the circle above the ellipse from the area of the rectangle (see Figure 3C):  238 

F7.9:  𝑨𝑨𝑨𝑨𝒕𝒕𝒕𝒕 = �
𝑨𝑨𝑨𝑨𝒔𝒔𝒔𝒔𝒆𝒆𝒆𝒆𝒔𝒔𝒔𝒔𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 + 𝑨𝑨𝑨𝑨𝒓𝒓𝒓𝒓𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 =  𝟏𝟏𝟏𝟏

𝟐𝟐𝟐𝟐
�𝒓𝒓𝒓𝒓𝒕𝒕𝒕𝒕(𝒙𝒙𝒙𝒙)�𝟐𝟐𝟐𝟐 ∗ (𝜽𝜽𝜽𝜽 − 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝜽𝜽𝜽𝜽) + 𝟐𝟐𝟐𝟐 ∗ 𝒁𝒁𝒁𝒁𝒕𝒕𝒕𝒕(𝒙𝒙𝒙𝒙) ∗ 𝒀𝒀𝒀𝒀𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒊𝒊𝒊𝒊𝒆𝒆𝒆𝒆𝒔𝒔𝒔𝒔𝒆𝒆𝒆𝒆(𝒙𝒙𝒙𝒙), 𝒀𝒀𝒀𝒀𝒕𝒕𝒕𝒕(𝒙𝒙𝒙𝒙) ≥  𝒀𝒀𝒀𝒀𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒊𝒊𝒊𝒊𝒆𝒆𝒆𝒆𝒔𝒔𝒔𝒔𝒆𝒆𝒆𝒆(𝒙𝒙𝒙𝒙)

𝑨𝑨𝑨𝑨𝒓𝒓𝒓𝒓𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 − 𝑨𝑨𝑨𝑨𝒔𝒔𝒔𝒔𝒆𝒆𝒆𝒆𝒔𝒔𝒔𝒔𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 =  𝟐𝟐𝟐𝟐 ∗ 𝒁𝒁𝒁𝒁𝒕𝒕𝒕𝒕(𝒙𝒙𝒙𝒙) ∗ 𝒀𝒀𝒀𝒀𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒊𝒊𝒊𝒊𝒆𝒆𝒆𝒆𝒔𝒔𝒔𝒔𝒆𝒆𝒆𝒆(𝒙𝒙𝒙𝒙) − 𝟏𝟏𝟏𝟏
𝟐𝟐𝟐𝟐
�𝒓𝒓𝒓𝒓𝒕𝒕𝒕𝒕(𝒙𝒙𝒙𝒙)�𝟐𝟐𝟐𝟐 ∗ (𝜽𝜽𝜽𝜽 − 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝜽𝜽𝜽𝜽), 𝒀𝒀𝒀𝒀𝒕𝒕𝒕𝒕(𝒙𝒙𝒙𝒙) <  𝒀𝒀𝒀𝒀𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆(𝒙𝒙𝒙𝒙)

 (19) 239 

Net areas are calculated as the differences between the areas under the sub-increment t and the area under the 240 

top of the shell (sub-increment 0), and volumes for sub-increments are calculated by integrating these areas 241 

over x (see formula F7.1 above). Shell growth rates are then calculated by multiplying the change in volume per 242 

sub-increment with Shell Density (ρ): 243 

F8.1: 𝜟𝜟𝜟𝜟𝑴𝑴𝑴𝑴𝒕𝒕𝒕𝒕 = 𝝆𝝆𝝆𝝆 ∗ (𝑽𝑽𝑽𝑽𝒕𝒕𝒕𝒕−𝟏𝟏𝟏𝟏 − 𝑽𝑽𝑽𝑽𝒕𝒕𝒕𝒕) (20) 244 

and absolute mass accumulation is calculated by simple multiplication of the modelled incremental volume 245 

increase of the shell with Shell Density: 246 

F8.2: 𝑴𝑴𝑴𝑴𝒕𝒕𝒕𝒕 = 𝝆𝝆𝝆𝝆 ∗ 𝑽𝑽𝑽𝑽𝒕𝒕𝒕𝒕 (21) 247 

 248 

2.4.2 Trace element modelling 249 

Step 5 of the model takes the BMP-file of the Phase map of the shell and a matrix of the quantified 250 

concentrations of all elements of interest in each of the phases as well as their colour values (Phase data, 251 

Figure 1) as input to convert the BMP image to a matrix of phases (Phase matrix, Figure 1). This matrix is then 252 

used to export a table with statistics of the relative abundance of phases in the entire phase map (Phase 253 

statistics, Figure 1). Phase data tables used as input to model every shell described in this study are given in 254 

supplementary data 3. 255 
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Step 6 uses this Phase matrix together with Incremental cross section to calculate the amount of pixels of each 256 

phase that is contained in every sub-increment (Sub-increment phase matrix, Figure 1). From this data, the 257 

concentration of each element in each sub-increment are calculated by multiplying the relative proportion of 258 

each phase in the sub-increment by the quantified concentrations of all elements in that phase: 259 

F9: 𝑪𝑪𝑪𝑪𝒕𝒕𝒕𝒕𝑬𝑬𝑬𝑬 = ∑ 𝑺𝑺𝑺𝑺𝒆𝒆𝒆𝒆
𝑺𝑺𝑺𝑺𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕

∗ 𝑪𝑪𝑪𝑪𝒆𝒆𝒆𝒆𝑬𝑬𝑬𝑬
𝒆𝒆𝒆𝒆=𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆
𝒆𝒆𝒆𝒆=𝒆𝒆𝒆𝒆𝟏𝟏𝟏𝟏  with  𝒆𝒆𝒆𝒆 in [𝒆𝒆𝒆𝒆𝟏𝟏𝟏𝟏,𝒆𝒆𝒆𝒆𝟐𝟐𝟐𝟐,𝒆𝒆𝒆𝒆𝟑𝟑𝟑𝟑, … ,𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆] (22) 260 

where Ct
E is the concentration of element E in sub-increment t, p is the phase (in p1, p2, p3… …pn), Sp is the 261 

amount of pixels assigned to phase p in sub-increment t, Stot is the total amount of pixels in sub-increment t, 262 

and Cp represents the concentration of element E in phase p. The distribution of trace element concentrations 263 

in each sub-increment is stored in Matrix of concentration through time. This matrix is then multiplied with a 264 

smoothed record of modelled mass accumulation and growth rates (see Step 4, smoothing occurs via a 265 

running average over the mass accumulation and growth rate records and the Degree of smoothing is 266 

customizable and determines the window size of this running average) to calculate the cumulative 267 

accumulation and accumulation rates, respectively, of all (trace) elements through time in the shell: 268 

F10.1: 𝑴𝑴𝑴𝑴𝒕𝒕𝒕𝒕
𝑬𝑬𝑬𝑬 = 𝑪𝑪𝑪𝑪𝒕𝒕𝒕𝒕𝑬𝑬𝑬𝑬 ∗ 𝑴𝑴𝑴𝑴𝒕𝒕𝒕𝒕 (23) 269 

F10.2: �𝝏𝝏𝝏𝝏𝑴𝑴𝑴𝑴
𝝏𝝏𝝏𝝏𝒕𝒕𝒕𝒕
�
𝒕𝒕𝒕𝒕

𝑬𝑬𝑬𝑬
= 𝑪𝑪𝑪𝑪𝒕𝒕𝒕𝒕𝑬𝑬𝑬𝑬 ∗ 𝑵𝑵𝑵𝑵 ∗ 𝜟𝜟𝜟𝜟𝑴𝑴𝑴𝑴𝒕𝒕𝒕𝒕 (24) 270 

Matrices of modelled elemental concentrations (Matrix of concentrations through time), cumulative trace 271 

element accumulation (Cumulative elemental mass accumulation) and accumulation rates (Elemental mass 272 

accumulation rate) modelled through the shell’s age are exported for further analysis. An overview of all 273 

model functions and variables is given in Table 1. Exported matrices containing modelling results for every 274 

shell featuring in this study are presented in supplementary data 4 275 

3. Results and discussion 276 

3.1 XRF and shell dimension measurements 277 

Shells of C. gigas are highly irregular with considerable differences in shape between individuals, as is evident 278 

from measurements of the shell dimensions (Table 2) and the colour scans of the shells (Figure 2 and 279 

supplementary data). Shell length, width, volume and mass vary considerably between C. gigas specimens and 280 

estimated age based on proxy records is not a good predictor of shell size. Furthermore, the length-to-width 281 

ratio is highly variable between shells, making size development in C. gigas hard to predict. Densities of C. 282 

gigas shells are relatively low (ρ = 2.10 g*cm-1) compared to the densities of shell-forming minerals such as 283 

calcite (ρ = 2.71 g*cm-1), aragonite (ρ = 2.95 g*cm-1) and nacre (ρ = 2.60 g*cm-1). This difference is most likely 284 

caused by the presence of porosity in the shell structure, which should be around 23% to account for the 285 

difference in shell density. 286 

Figure 2 shows the result of colour scanning, XRF mapping with phase analysis and a tracing of the growth 287 

increments in a longitudinal cross section through one of the C. gigas shells. The shell depicted in Figure 2 is 288 
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used as an example for the remainder of the results and discussion, while outcomes for the remaining seven 289 

shells are disclosed in in supplementary data 5. Figure 2 shows that phase analysis on the XRF map of oyster 290 

shells results in the separation of four chemically distinct phases in the cross section. Comparison with the 291 

colour scan shows that these phases represent dark foliated calcite layers in the shell (green), light chalky 292 

calcite layers in the shell (blue), detrital inclusions in the edge of the shell (yellow) and the surrounding resin 293 

(red). Trace element concentrations of the foliated and chalky calcite phases in each shell are found in Table 3. 294 

Mapping and phase analysis in all shells resulted in a distinction between foliated calcite and chalky calcite 295 

layers in terms of chemical composition (see Figure 2 and compare chemical compositions in Table 3). The 296 

phase map in Figure 2 also shows that the hinge of the shell consists of foliated calcite. Traces of growth 297 

increments in the oyster shell show once more that growth patterns in C. gigas are highly irregular. While shell 298 

growth always happens by addition of material on the inside of the shell valve (facing down in Figure 2), shell 299 

thickness varies strongly throughout the shell and shell extension rates vary both with age and with location in 300 

the shell. Furthermore, oyster shells extend away from the shell hinge (to the right in Figure 2) as well as 301 

towards the inside of the shell, making the hinge thicker with age (downward and to the left in Figure 2). These 302 

shell characteristics complicate the modelling of shell growth and render C. gigas an ideal species for rigorous 303 

testing of the model presented in this study. 304 

Results of line scanning through the hinge of the oyster are shown in Figure 4. Shells of C. gigas are 305 

characterized by periodic variations in concentrations of strontium (Sr), magnesium (Mg), sulphur (S), iron (Fe), 306 

manganese (Mn) and zinc (Zn). Records of silicon (Si) and calcium (Ca) concentrations indicate which parts of 307 

the records represent pure shell calcite (high [Ca], low [Si]) and which consist of calcite diluted with detrital 308 

material (lower [Ca], [Si] > 2000 µg/g, mostly on the outside of the shell, see Fig. 4). Shell increments used as 309 

tracers for growth modelling are generally characterized by decreased Ca and Mg concentrations and 310 

increased concentrations of Fe, Mn, Zn and Sr. Furthermore, records of Sr and Zn show regular cyclicity, while 311 

Fe and Mn records are characterized by sharp increases relative to a stable baseline. The Mg record shows 312 

small scale variations inversely related to those in the Zn record. Periodic variations in the trace element 313 

records allow the establishment of an age model for the growth of this oyster shell, as is shown in Figure 4. 314 

Note that line scanning through the hinge of the shell only allows for the sampling of the last three growth 315 

years, as the irregular shape of the oyster shell and the occurrence of chalky calcite further up the hinge 316 

prevents the measurement of a complete record through the foliated calcite. Also note that growth 317 

increments used as a basis for growth modelling are not paced to the seasonal cycle. The organisation of 318 

isochronous growth increments in the colour scan on top of Figure 4 shows the occurrence of chalky calcite 319 

layers embedded between foliated calcite layers in some parts of the shell while these are absent in other 320 

parts. This further confirms that multiple types of shell mineral phases (e.g. foliated calcite and chalky calcite) 321 

can be precipitated in the shell simultaneously. Since mineral phases are chemically distinct (Table 3), this 322 

observation warrants the consideration of the growth of both shell phases in an analysis of trace element 323 

uptake by oyster shells, showing that simply analysing foliated calcite in the hinge of the shell may not yield a 324 

complete understanding of the incorporation of trace elements into the shell. 325 
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3.2 Growth model 326 

The output of the growth model applied on cross sections of C. gigas shells consists of records of shell length, 327 

average thickness, volume, mass and growth rates through shell age (Figure 5). Tables containing the complete 328 

records of all these parameters for all shells are given in supplementary material 4, and modelled shell 329 

dimensions at the end of the modelling run are given in Table 2. Figure 5 shows the records for the above 330 

mentioned shell parameters plotted against age following the age model based on line scans through the shell 331 

hinge. The results show that, though there is ample variation in size development between individuals, the 332 

development of shell size parameters follow a similar pattern in all the examined shells. Development of shell 333 

length in all modelled shells follows the asymptotic Von Bertalanffy growth model (𝐿𝐿𝐿𝐿 =  𝐿𝐿𝐿𝐿∞ ∗ 𝑒𝑒𝑒𝑒−𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘; Von 334 

Bertalanffy, 1957). Parameters of Von Bertalanffy models (k and 𝐿𝐿𝐿𝐿∞) fitted to shell length records of each shell 335 

are given in Table 2. Results show that, while Bertalanffy curves fit the shell length development very well (R2 > 336 

0.90 for most shells except for #3 and #4), Bertalanffy’s K values (k) as well as maximum shell lengths (𝐿𝐿𝐿𝐿∞) vary 337 

strongly. This result is unsurprising for oyster shells, which are known to show large variations in growth rate 338 

and morphology in response to local environmental constraints on their growth (Galtsoff, 1964; Palmer and 339 

Carriker, 1979). Curve fitting through a composite of all C. gigas shells yields a maximum shell length of 102.34 340 

mm and the growth curve constant (Bertalanffy’s K) of 0.99. The values for maximum shell length are 341 

significantly lower than the value found for sister-taxa C. virginica (150 mm; Rothschild et al., 1994), but this 342 

may be a result of the use of relatively young individuals in this study. The fact that the obtained results seem 343 

to fit the Von Bertalanffy model well (R2 = 0.60 for all shells combined, see Table 3 and Figure 5) shows that 344 

the shell growth results produced by the model are reasonable, because it is known that the Von Bertalanffy 345 

growth model describes shell length in most bivalves. The values for Bertalanffy’s K fitting the model results 346 

are quite high compared to most bivalve growth studies (e.g. Bachelet, 1980; MacDonald and Thompson, 347 

1985; Hart and Chute, 2009), but values greater than 1 are not unheard of in bivalve species that show steep 348 

growth curves early in life (e.g. Urban, 2000; Richardson et al., 2004). Modelled shell lengths closely resemble 349 

those measured on the shell, with an average offset of 0.16 mm (0.16% relative to average shell length, see 350 

Table 2) and are in good agreement with shell length measurements of living specimens of C. gigas (Diederich, 351 

2006). 352 

The development of other growth parameters shows similar variation within the same pattern of development 353 

between individuals of C. gigas, attesting to the reproducibility of the growth model. For example, the average 354 

shell thickness of oyster shells is best described by a linear increase in thickness with age (Figure 5). Individual 355 

results show that the initial increase in thickness (slope of the average shell thickness curve) is quite variable, 356 

but that later in life the different individuals of C. gigas converge towards a similar average shell thickness. This 357 

results in rather variable rates of shell thickness increase between individuals (0.54–1.61 mm/yr, see Table 2). 358 

The convergence of the shell thickness curves at later age suggests that this range is biased by the use in this 359 

study of relatively young individuals. These differences in the development of shell thickness in oyster shells 360 

are likely to be a result of spatial constraints on shell growth (Bartol et al., 1999). The agreement between the 361 

final thicknesses of individuals is quite remarkable given their irregular shell shape and vastly different 362 
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proportions of shell length and width (Table 2). Maximum thickness (thickness of the thickest part of the shell) 363 

is not modelled and therefore cannot be compared with measured values in Table 2, but modelled average 364 

thicknesses are in agreement with observations in the cross section, and are proportional to measured 365 

maximum thickness of the shells. 366 

Modelled shell mass and volume development are best approximated by a polynomial increase with shell age 367 

that is in agreement with the linear increase observed in modelled growth rates of C. gigas, which is naturally 368 

the derivative of shell mass development (Figure 5). Modelled shell volume and mass at the end of the shell’s 369 

lifetime generally underestimate measured volume and mass by 4.2 cm3 and 9.0 g respectively (±21%, see 370 

Table 2). The most likely reason for this offset is that the assumption of a semi-circular shape of the YZ-plane 371 

cross-section through the shell (perpendicular to the growth axis, see Figure 3C) underestimates the area of 372 

this cross section. In reality, the decrease in shell thickness towards the outer margins of the shell is probably 373 

less pronounced. Trends in volume and growth rates are less reproducible between individuals than those in 374 

shell length and shell thickness, as is evident from the diverging polynomial fits that fit the model data. This 375 

behaviour illustrates the erratic growth of C. gigas shells, which is also evident from the shape of their shell 376 

(Figure 2 and supplementary data 5). As is shown by the modelled growth rate curves (Figure 5), the growth 377 

of these oyster shells is characterized by short-lived increases in growth rate followed by periods of slower, 378 

more constant shell growth. The implications of these periodic growth spurts punctuating more constant 379 

growth rates are also visible in the shell volume curves that often show stepwise increases in shell volume. To 380 

a lesser extent, the same periodic growth is seen in the records of shell length and thickness. On a closer 381 

examination, periods of faster growth rates can be associated with either contemporary increases in shell 382 

length or in shell thickness, but rarely both at the same time. This strongly suggests a control of available 383 

growth space on the shape and size development of C. gigas shells in competition with other individuals in an 384 

oyster reef (e.g. Palmer and Carriker, 1979; Bartol et al., 1999). On the other hand, food availability is known to 385 

significantly affect growth rates in bivalve shells (Kerswill, 1949; Coté et al., 1994; Surge and Lohmann, 2008), 386 

showing that peaks in growth rate found by the model results in this study may be attributed to short-lived 387 

increases in food availability commonly associated with algal blooms in spring and autumn in the region of 388 

study (Edwards et al., 2001; Wiltshire et al., 2008). This reliance of shell growth on environmental factors 389 

illustrates the potential of these model results to aid in the reconstruction of environmental conditions. 390 

3.3 Trace element model 391 

Records of trace element accumulation rates and total shell trace element concentrations that result from 392 

trace element modelling are plotted for one of the C. gigas shells in Figure 6 together with concentrations in 393 

the hinge of the shell measured using XRF line scanning. Records of accumulation rates of different elements 394 

show similar trends during shell growth and correlate with changes in shell growth rates. For some elements 395 

(e.g. Zn and S) the total shell concentrations over time resemble concentrations measured in the hinge of the 396 

shell, while for other elements (e.g. Mg and Sr) the total shell concentrations show a very different pattern 397 

from the measured concentrations in the foliated calcite in the shell hinge. The reason for this difference is 398 

that some elements (e.g. Zn and S) have very similar concentrations in the foliated calcite and the chalky 399 
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calcite layers, whereas these concentration can be very different for other elements (e.g. Mg and Sr; see Table 400 

3). Since the type of mineral phase deposited during shell growth is not controlled by growth seasonality or 401 

age (Surge et al., 2001; Titschack et al., 2008), differences in the degree of incorporation of mineral phases 402 

over time will result in different total shell concentrations. These differences in total shell concentrations and 403 

concentrations in the shell hinge illustrate the value of the proposed trace element modelling approach, as 404 

concentrations taken up in the shell are better reflected by total shell concentrations than by concentrations in 405 

one of the mineral phases in the shell. Furthermore, in combining the results of trace element modelling with 406 

measurements on the shell hinge of bivalves, it is possible to constrain the relative amount of each mineral 407 

phase that is incorporated into the shell at any given time. This allows the reconstruction of changes in shell 408 

mineralogy and help isolate of the factors that control these changes, which is an important question in the 409 

study of oyster growth (e.g. Currey and Taylor, 2000; Surge et al., 2001; Titschack et al., 2008;Beniash et al., 410 

2010). 411 

4. Conclusions and outlook 412 

This study proposes a new method of modelling the growth, development and trace element incorporation in 413 

bivalve shell based on the location of growth increments in a cross section of the shell. The advent of a 414 

working model that can independently constrain growth and trace element uptake rates would greatly benefit 415 

the field of bivalve sclerochronology by providing independent control on shell growth rates, which influence 416 

the expression of geochemical proxies in the shell. This development is especially interesting for studies 417 

dealing with extinct bivalve species for which there are no modern analogues. The basic assumptions of the 418 

model render it applicable on all bivalve species with the same general shape and growth direction. Growth 419 

modelling following this numerical approach yields curves of shell development with age that resemble growth 420 

curves established via in vivo measurements and allows the discussion of differences in growth and 421 

development within and between bivalve species. The present modelling approach allows the comparison of 422 

growth and development of bivalve shells on a sub-annual scale without a priori knowledge about growth 423 

rates in the species, opening up the comparison of proxy records in fossil bivalves with records of growth rate 424 

derived by applying this model. This allows the discussion of the applicability of trace element concentrations 425 

as direct tracers of environmental change as opposed to being controlled by physiological processes related to 426 

shell growth. 427 

The combination of growth modelling with 2D trace element XRF mapping allows the projection of trace 428 

element distribution to a 3D model of shell volume to numerically model the total shell concentration and 429 

accumulation of trace elements into bivalve shells. Comparison between modelled total shell trace element 430 

content and concentrations measured along the growth axis in the shell hinge following a conventional 431 

measurement protocol reveals different patterns in trace element concentrations. This shows that 432 

conventional trace element profiles through the shell hinge, recording only a small part of the shell, are not 433 

always representative for total shell concentrations and that modelling these concentrations may shed more 434 

light on the incorporation of trace elements into bivalve calcite. Further research should therefore consist of 435 

applying this modelling approach in other bivalve studies to compare modelled and measured trace element 436 
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concentrations. According to the results presented here, studies focusing on establishing trace element proxy 437 
transfer functions could benefit from basing their regressions on total shell trace element concentrations 438 
rather than measurements in the shell hinge in their attempts to isolate environmental controls on trace 439 
element concentrations in bivalve calcite. 440 

 441 

Code availability 442 

The R script of the ShellTrace model used in this paper was published in the open source research data 443 
repository Zenodo (http://doi.org/10.5281/zenodo.817258). The complete script used for the ShellTrace 444 
model in this publication will be made available by means of an R package in the CRAN repository 445 
(https://cran.r-project.org), and the script is given in supplementary data 2. 446 
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 602 

FIGURE 1: Schematic overview of the growth model and trace element module described in this paper. Yellow 603 
boxes indicate the modelling steps (Step 1-6) described in chapter 3, diamond-shaped elements represent data 604 
packages, ellipses represent model input parameters and boxes represent functions in the model. Elements 605 
are connected by arrows if they interact (i.e. if data packages and/or model parameters serve as input or 606 
output of model functions). Coloured data packages are the output of the model. 607 

FIGURE 2: Example of a colour scan (top), a µXRF phase map (middle) and the digitized increments (bottom) of 608 
a Crassostrea gigas shell. Phase maps show the distribution of Araldite® 2020 resin (red), foliated calcite 609 
(green), chalky calcite (blue) and detrital material (yellow) in the shell cross sections. The C. gigas shell 610 
depicted in this figure corresponds to C. gigas shell #1 in Table 2. 611 

FIGURE 3: Schematic illustration of morphology of a typical bivalve shell including an indication of all 612 
parameters used in the growth and trace element models. Figure 2A shows a cross section along the shell’s 613 
major growth axis (XY plane), which is the plane along which the shells were sectioned. This cross section 614 
illustrates the parameters used to define shell increments and how interpolation between them is done (see 615 
section 3.1, model step 2). Figure 2B shows an overview of the shell and a definition of the axes (X, Y and Z) as 616 
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well as the parameters defined in the base ellipse of the shell (see section 3.1, model step 3). Figure 2C shows 617 
a perpendicular cross section through the width of the shell (YZ plane), which illustrates the parameters used 618 
in the determination of shell volume (see section 3.1, model step 4). 619 

FIGURE 4: Overview of the results of quantitative XRF line scanning on a C. gigas shell (#1 in Table 2). On top of 620 
the figure is a colour scan of a cross section through the shell. The enlarged image on the left hand side shows 621 
the shell hinge including digitized growth increments (black lines with increment numbers), annual chronology 622 
interpreted from trace element records (yellow and transparent bands with years) and the location of the line 623 
scan (A to B, dark blue arrow). The lower right graph shows results of trace element records along the XRF line 624 
scan with growth increments (black lines) and annual chronology (yellow and transparent areas) indicated 625 
vertically on the graphs. From top to bottom, records of Ca (dark blue), Si (dark red), Zn (magenta), Mn 626 
(purple), Fe (orange), S (red), Mg (green) and Sr (blue) are plotted against line scan distance, increment 627 
number and time on three separate x-axes at the bottom of the graph. 628 

FIGURE 5: Graphs showing modelled evolution of shell length (top left), average shell thickness (bottom left), 629 
shell volume and mass (top right) and shell growth rates (bottom right) with shell age. Solid blue lines in 630 
different shadings indicate records from individual C. gigas shells. Thin dashed blue curves indicate models 631 
fitted through the growth curves of C. gigas shells, while bold dashed black curves show models fitted through 632 
a composite of modelled data from all shells combined. Regression formulae and statistics are given in Table 2. 633 

FIGURE 6: Plotted results of trace element modelling and line scanning in one of the C. gigas shells (#1 in Table 634 
2). Shaded areas indicate the evolution of modelled accumulation rates (in mg/yr) of major and trace elements 635 
with shell age. Solid coloured lines indicate the change in modelled total shell concentrations with shell age. 636 
Coloured points connected by black lines indicate measured elemental concentrations in the hinge of the 637 
shells plotted against shell age (see also Figure 4) 638 

TABLE 1: Table listing all functions used in the growth and trace element models (see chapter 3) and the 639 
variables used in these functions. Function names and names of data packages are also found in Figure 1 and 640 
in the text. 641 

TABLE 2: Overview of measured shell dimensions (top left), dimensions of XRF maps of all shells used in this 642 
study (top right), shell dimensions at the end of the model run (bottom left) and parameters of growth curves 643 
fitted through the modelled data (bottom right). Average density of shells was calculated from the averages of 644 
shell mass and volume. 645 

TABLE 3: Table listing concentrations of all elements used in this study in both chalky and foliated calcite 646 
phases of C. gigas and O. figari shells. The “% of map”-column shows the amount of pixels the mineral phases 647 
take up relative to the total cross section area (not including resin mapped in the XRF mapping, see Figure 3). 648 
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Supplementary data 1: SVG and CSV files of cross sections through all the Crassostrea gigas shells used in this 649 
study 650 

Supplementary data 2: Complete R-script used to model growth and trace element uptake as described in this 651 
study 652 

Supplementary data 3: Data of phase analysis of all trace element XRF maps including RGB colour values and 653 
trace element concentrations of all phases. 654 

Supplementary data 4: Repository containing all data matrices generated by the model ran on all shells 655 
featuring in this study. 656 

Supplementary data 5: BMP images of phase maps of all shell cross sections used as input of the trace 657 
element model in this study. 658 
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Model Model step Func�on name source of variables variables stored in:
Digitized cross section
Digitized cross section
Digitized cross section
Digitized cross section

dx
Digitized cross section
Digitized cross section
Digitized cross section
Digitized cross section
Digitized cross section
Digitized cross section
Digitized cross section
Digitized cross section
Digitized cross section
Digitized cross section

Shell width
Shell length

Sub-incremental cross section
Sub-incremental cross section
Sub-incremental cross section
Sub-incremental cross section

Sub-incremental cross section
Sub-incremental cross section
Sub-incremental cross section
Sub-incremental cross section

dx
Sub-incremental cross section
Sub-incremental cross section

F7.3 Sub-incremental cross section
F7.4
F7.5

Shell density
Sub-increment phase matrix
Sub-increment phase matrix

Phase data

Matrix of parameters by sub-
increment

Number of sub-increments

Cumulative elemental 
mass accumulation 

matrix

Elemental mass 
accumulation rate 

matrix

Gr
ow

th
 m

od
el

Tr
ac

e 
el

em
en

t m
od

el

F10.2

F10

Step 6
F10.1

Matrix of concentra�on 
through �me

Matrix of parameters by sub-
increment

F8.1

F8.2

Step 3

Matrix of parameters by 
increment

Step 2
F2

F3

Matrix of parameters by 
increment

F1
Matrix of parameters by 

increment

F4

Equa�on

F4.1

F4.2

F5
F5.1

F5.2

F6

F7.8

F7.9

F7.1

Z-values

Sub-incremental cross 
section

Z-values

Matrix of parameters by sub-
increment

F7.6

F7.7

Matrix of parameters by 
sub-increment

Matrix of parameters by 
sub-increment

Number of sub-increments

Matrix of parameters by 
sub-increment

Matrix of parameters by sub-
increment

Matrix of parameters by sub-
increment

F9

F8

Step 4
Sub-incremental cross section

Matrix of parameters by sub-
increment

F7.2

F6.1

F6.2

F6.3

F7

variables OUT

Matrix of concentration 
through time

Matrix of parameters by sub-
increment

Matrix of parameters by sub-
increment

Matrix of parameters by 
sub-increment

Matrix of parameters by 
sub-increment

variables IN
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#
Shell length

(m
m

)
Shell w

idth
(m

m
)

M
axim

um
 shell

thickness (m
m

)
Shell m

ass
(g)

Shell volum
e

(cm
3)

Density
m

ap w
idth

(m
m

)

m
ap 

length
(m

m
)

Crassostrea gigas #1
93.06

56.78
9.26

45.00
21.38

2.10
78.10

24.93
Crassostrea gigas #2

100.82
59.18

7.22
50.46

23.98
2.10

101.01
33.30

Crassostrea gigas #3
101.94

43.07
8.84

40.25
19.13

2.10
102.00

39.00
Crassostrea gigas #4

101.46
53.37

10.62
39.48

18.76
2.10

106.55
26.55

Crassostrea gigas #5
86.47

60.46
7.71

54.93
26.10

2.10
88.30

29.50
Crassostrea gigas #6

83.52
53.95

3.39
23.88

11.35
2.10

85.68
31.53

Crassostrea gigas #7
100.86

51.60
7.05

42.95
20.41

2.10
103.00

20.10
Crassostrea gigas #8

101.50
57.77

4.54
39.38

18.71
2.10

102.66
34.80

Average
96.20

54.52
7.33

42.04
19.98

standard deviation
7.53

5.53
2.40

9.21
4.38

Fit
equa�on

Fit
param

eter
N

L0
k

R2
a

R2
a

e
R2

R2

Crassostrea gigas #1
97.31

59.37
4.61

30.66
14.60

2.10
Crassostrea gigas #1

700
140.40

0.28
0.95

0.80
0.99

0.20
3.58

0.98
0.62

Crassostrea gigas #2
100.45

58.96
4.89

38.65
18.40

2.10
Crassostrea gigas #2

900
106.19

0.79
0.91

0.99
0.99

1.53
2.45

0.97
0.29

Crassostrea gigas #3
102.34

43.24
5.88

58.26
27.74

2.10
Crassostrea gigas #3

600
94.76

11.09
0.25

0.54
0.93

0.87
1.97

0.88
0.70

Crassostrea gigas #4
101.08

53.17
6.41

36.57
17.41

2.10
Crassostrea gigas #4

700
90.77

44.65
0.17

0.78
0.99

0.78
2.23

0.99
0.19

Crassostrea gigas #5
89.56

62.62
4.42

25.66
12.21

2.10
Crassostrea gigas #5

700
91.50

2.29
0.98

1.61
0.98

6.58
2.08

0.88
0.32

Crassostrea gigas #6
78.80

50.90
3.83

15.85
7.55

2.10
Crassostrea gigas #6

600
83.39

1.13
0.98

1.33
0.99

2.66
2.00

0.93
0.66

Crassostrea gigas #7
100.74

51.54
4.84

25.78
12.28

2.10
Crassostrea gigas #7

800
103.28

1.01
0.91

0.94
0.99

0.66
2.76

0.96
0.76

Crassostrea gigas #8
100.59

57.25
5.16

32.97
15.70

2.10
Crassostrea gigas #8

482
100.59

4.47
0.76

1.23
0.99

5.99
1.40

0.97
0.44

Average
96.36

54.63
5.01

33.05
15.74

standard deviation
8.17

6.18
0.82

12.47
5.94

O
yster XRF m

ap dim
ensions

0.21

Spa�al resolu�on
(um

)
2530302525252530

26.88
2.59

0.94
0.91

1.83
Crassostrea gigas com

posite
4655

102.34
0.99

0.60

3.59

2.81

3.45
2.13
4.77
4.06
2.44

Shell volum
e

(cm
3)

Density

G
row

th rate (g/yr)

dM
/dt = a * t

a

#
Shell length

(m
m

)
Shell w

idth
(m

m
)

Average shell
thickness (m

m
)

Shell m
ass

(g)

# pixels in 
Y-direc�on

Total
# of pixels

3114628
3737370
4420000
4526244
4167760
4321447
3312480
3969520

3532
3427
4120
3422

997
1110
1300
1062

O
yster dim

ensions

M
odel results

Shell Length (m
m

)
Shell thickness (m

m
)

1180
1261
804

1160

# pixels in
X-direc�on

3124
3367
3400
4262

L = L0 * e ^ (k * t)
T = a * t

M
 = a * t ^ e

3946181
519354

Shell m
ass (g)

Grow
th curve fits

2.53
2.86

1.98
0.76
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M
g

(µg/g)
Si

(µg/g)
P

(µg/g)
S

(µg/g)
Ca

(µg/g)
M

n
(µg/g)

Fe
(µg/g)

Zn
(µg/g)

Sr
(µg/g)

Reproducibility error (1σ)
± 422

± 148
± 4

± 121
± 395

± 4
± 6

± 11
± 3

C.gigas
1

62.53%
-

2384
2

116
383304

27
162

17
297

C.gigas
2

68.87%
4001

4259
137

5341
374559

98
49

57
1877

C.gigas
3

59.25%
4393

4934
151

5267
353857

33
7

31
1135

C.gigas
4

49.55%
2368

4239
44

2891
378539

47
14

23
644

C.gigas
5

83.91%
1643

3108
73

1627
390939

51
30

57
703

C.gigas
6

79.12%
1802

2903
81

1923
388243

66
43

27
611

C.gigas
7

40.40%
1847

4231
70

3097
384371

23
125

20
699

C.gigas
8

71.97%
4267

5175
182

5921
357400

92
71

52
1358

C.gigas
1

37.47%
2744

4732
114

6399
351759

103
261

54
1433

C.gigas
2

31.13%
1153

3644
78

3920
388370

70
13

75
1432

C.gigas
3

40.75%
1801

3279
71

3069
381022

30
0

25
1382

C.gigas
4

50.45%
1304

1455
484

2173
387183

61
39

26
694

C.gigas
5

16.09%
2112

3837
48

1907
389176

65
138

62
1690

C.gigas
6

20.88%
1903

6047
81

2040
386690

58
31

22
1510

C.gigas
7

59.60%
1062

2161
31

1691
392954

38
1

17
728

C.gigas
8

28.03%
2488

2522
72

4077
380805

78
37

52
1525

Chalky calciteFoliated calcite
species

#
%

 of m
ap

Table 3
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