
Reply	to	Anonymous	Referee	#2.	
	
We	would	like	to	thank	referee	#2	for	taking	the	time	to	review	our	paper	and	for	
the	thoughtful	comments.		We	will	reply	to	each	comment	individually	below.	
	
Specific	comments:		
	
1.	The	abstract	(as	well	as	some	other	parts	in	the	context,	such	as	P3	L14∼L15,	P6	
L14∼L15,	and	P11L31)	mentions	that	“OASIS3-MCT_3.0	is	the	latest	release	and	
includes	the	ability	to	couple	between	components	running	sequentially	on	the	
same		
set	of	tasks”.	It	seems	contradictory	to	P6	L24∼L25	that	“Each	task	will	be	
associated	with	only	one	executable	and	one	component	in	any	application”,	which	
indicates	that	components	cannot	share	any	task.	According	to	the	API	of	
“oasis_init_comp”,	I	think	the	statement	in	P6	L24∼L25	is	true.		
	
We	have	clarified	the	sentence	in	the	introduction	to	"OASIS3-MCT_3.0	extends	the	
ability	to	couple	components	running	concurrently	and	adds	support	for	coupling	
within	a	component	for	grids	and	fields	defined	on	overlapping	or	partially	
overlapping	sets	of	tasks,	such	as	between	physics	and	dynamics	modules	within	an	
atmospheric	model	or	to	and	from	a	model	I/O	module."		We	have	clarified	the	
description	a	bit	in	section	2.5.			In	particular,	we	have	updated	the	first	sentence	to	
be	"	The	ability	to	couple	fields	within	one	executable	running	on	partially	
overlapping	tasks	was	added	in	OASIS3-MCT_3.0".		We	have	also	added	a	sentence,	
"While	OASIS3-MCT	supports	both	single	and	multiple	executable	configurations,	
the	coarsest	level	of	concurrency	in	the	system	is	the	component."		In	the	
conclusions,	we	modified	the	sentence	to	"	OASIS3-MCT_3.0	also	provides	new	
capabilities	to	couple	fields	within	a	single	component	running	on	concurrent,	
overlapping,	or	partially	overlapping	processes	".	The	reviewer	makes	a	good	point	
that	we	were	implying	that	components	could	run	on	overlapping	tasks	and	that's	
not	true	and	that	has	been	fixed	in	the	text.	
	
	
2.	P1	L15∼L18,	P6	L18∼L19,	P6	L25∼L27	and	P12	L1∼L2	may	indicate	that	that	
there	can	be	two	different	decompositions	of	the	same	grid	within	the	same	
component	and	these	two	decompositions	can	have	different	subsets	of	the	tasks	
(processes).	To	achieve	this	capability,	the	API	“oasis_def_partition”	has	been	
extended	with	an	addi-	tional	parameter	“name”.	When	I	read	the	user	manual	at	the	
first	time,	I	guested	that	“name”	means	the	name	of	the	grid.	After	a	careful	
consideration,	I	think	that	“name”	should	be	the	keyword	of	a	decomposition	but	not	
the	name	of	the	corresponding	grid,	which	means	that	the	“name”	corresponding	to	
two	different	decompositions	of	the	same	grid	within	the	same	component	should	
be	different.	If	that	point	is	true,	please	clarify	it.		
	



That	is	correct,	the	name	associated	with	the	"oasis_def_partition"	call	is	the	name	
given	to	the	parition,	not	to	the	grid.		We	will	clarify	in	the	user	guide.	
	
3.	The	ability	to	define	grids	has	been	mentioned	several	times	in	the	paper.	What	
does	it	mean	when	only	the	API	for	writing	grid	data	into	files	are	introduced	in	the	
user	manual.	According	to	Figure	2,	is	the	grid	defined	implicitly	in	the	definition	of	
decomposition?		
	
The	grid	is	something	that	does	not	depend	on	the	decomposition	and	defines	the	
grid	center,	corner,	area,	and	mask	information.		At	run	time,	OASIS	reads	this	grid	
in	a	file	that	can	be	either	produced	by	the	user	before	the	run	or	written	through	
the	API	by	the	model.	A	partition	is	specific	decomposition	of	a	grid	in	the	model.		
We	have	removed	figure	2	from	the	revised	draft	as	this	better	fits	into	the	user	
guide	and	we	will	update	the	user	guide	to	clarify.	
	
4.	Compared	to	OASIS3,	OASIS3-MCT_3.0	have	a	new	capability	of	pre-defined	map-	
ping	files.	After	reading	the	paper	as	well	as	the	user	manual,	it	is	still	unclear	for	me	
that	how	to	make	OASIS3-MCT_3.0	know	which	mapping	file	should	be	used	for	a	
specific	set	of	coupling	fields	(for	example,	users	may	want	to	use	bilinear	algorithm	
for	state	fields	and	use	conservative	algorithm	for	flux	fields	when	coupling	fields	
from	an	atmosphere	model	to	an	ocean	model).	Is	there	any	restriction	when	users	
using	the	pre-defined	mapping	file.	Concrete	examples	are	welcome	for	this	new	
capability.		
	
We	will	clarify	this	information	in	the	user	guide.		For	a	given	entry	in	the	
namcouple	file,	the	namcouple	keyword	MAPPING	specifies	the	mapping	file	for	
those	coupling	fields.		Each	coupling	field	can	be	associated	with	a	different	mapping	
file	rather	arbitrarily	and	each	mapping	file	can	be	generated	via	different	
algorithms.	
	
5.	P7	L28∼L29.	It	is	interesting	to	know	how	to	make	the	puts	non-blocking.	In	MCT,	
the	data	sending	is	blocking	for	example	with	the	MPI_wait,	which	indicates	that	
such		
MPI_wait	should	be	disabled	for	the	non-blocking	puts.	It	seems	that	OASIS3-
MCT_3.0	does	not	use	another	MPI_wait	out	of	MCT.	So,	one	interesting	question	
here	is	that	how	OASIS3-MCT_3.0	guarantees	the	puts	constantly	non-blocking	(for	
example,	we	encountered	the	case	that	MPI_Isend	was	blocked	when	we	sent	a	large	
message	or	many	small	massages)	and	how	OASIS3-MCT_3.0	achieves	safe	non-
blocking	puts	(for	example,	how	to	guarantee	that	next	puts	do	not	flush	the	data	of	
previous	puts	in	memory	buffer).		
	
MCT	supports	non-blocking	MPI.		The	reviewer	is	correct	that	at	some	point,	MCT	
will	execute	an	MPI_Wait	for	a	non-blocking	MPI_ISend.		On	the	put	side,	this	
happens	before	the	next	put	of	the	same	data	at	the	next	timestep.		We	define	this	as	
non-blocking	MPI	because	the	model	does	not	wait	for	the	actual	put	to	occur	and	



the	model	can	continue	to	advance.		In	fact,	the	put	is	only	non-blocking	in	the	sense	
that	it	can	be	only	one	coupling	period	ahead	of	the	get	at	the	most.		While	on	the	get	
side,	the	MPI	is	blocking	at	the	time	of	the	get.		We	have	clarified	the	text	in	section	
2.5	to	reflect	this	information.	
	
6.	P6	L10∼L11	states	that	“The	opt	option	will	however	be	bit-for-bit	reproducible	if	
the	same	number	of	processes	is	used	between	different	runs”.	Given	the	same	
number	of	processes,	bit-for-bit	results	may	fail	to	be	reproduced	if	the	
decomposition	changed.		
	
The	reviewer	is	correct	that	if	the	decomposition	changes,	the	sum	will	not	be	bit-
for-bit	reproducible.		We	have	updated	that	sentence	as	follows,	"	The	opt	option	
will	however	be	bit-for-bit	reproducible	if	the	same	number	of	processes	and	
decomposition	are	used	between	different	runs	."		We	have	also	updated	the	
conclusions.	
	
7.	One	suggestion	regarding	Section	2.4	is	that	the	opt	option	can	use	higher-
precision	of	floating-point	calculation	to	achieve	faster	bit-for-bit	identical	
reduction.	For	example,	using	REAL8	when	the	coupling	fields	are	REAL4	and	using	
REAL16	when	coupling	fields	are	REAL8.		
	
We	have	significantly	revised	section	2.4	to	include	some	preliminary	results	of	
three	new	global	sum	algorithms	including	the	algorithm	suggested	by	the	reviewer	
that	are	currently	in	the	development	version	of	OASIS3-MCT	and	expected	in	the	
OASIS3-MCT_4.0	release.		The	global	sum	calculation	implemented	in	OASIS3-
MCT_3.0	needed	significant	revision	as	indicated	in	the	earlier	version	of	the	paper	
and	this	has	already	been	undertaken.	
	
8.	Some	results	in	Table	4	seem	strange	to	me.	Why	the	time	for	<10	fields,	10	
couplings>	is	obviously	smaller	than	10	times	of	the	time	of	<1	field,	1	coupling>?	
Why	<10	fields,	1	coupling>	is	not	much	faster	than	<10	fields,	10	couplings>?	The	
most	significant	reason	may	be	the	MPI	message	size	of	<1	field,	1	coupling>	is	big	
because	the	two	components	have	similar	decompositions	and	the	core	number	is	
small	relative	to	the	big	grid	size.	Given	the	same	core	number,	more	test	cases	with	
smaller	grid	size	and	different	decompositions	between	the	two	components	are	
welcome.		
	
We	have	merged	and	updated	the	results	in	table	3	and	4	and	added	some	new	
information.		We	have	added	a	barriered	ping	pong	time	to	compare	with	an	
unbarried	time.		This	provides	additional	insights	into	the	results	that	were	not	
available	in	the	initial	version	of	the	paper.		In	particular,	10	fields,	10	couplings	is	
fastest	in	the	unbarriered	ping-pong	time	because	it	seems	the	amount	of	work	that	
is	overlapped	between	coupling	and	mapping	is	highest	in	that	case.		That	case	has	
the	highest	performance	degradation	when	the	send	and	mapping	are	barriered	and	



the	mapping	time	of	the	10	fields,	1	coupling	is	faster.		These	issues	are	now	
discussed	in	the	paper	in	section	3.4.	
	
9.	The	year	of	the	first	reference	should	be	2008.	
	
We	have	changed	2009	to	2008,	thanks.	
	
	


