
Overall response 
First, we thank Reviewer #2 for taking his/her time to read through our paper. 

However, we are disappointed that Reviewer #2 largely misunderstood our development 
and analyses, while Reviewer #1 has grasped the important concepts and agrees with 
their relevance and importance. Below we respond to Reviewer #2’s comments. 
However, given Reviewer #2’s (1) large number of misunderstandings of our work; (2) 
fundamentally incorrect criticisms, and (3) poorly constructed suggestions for improving 
the manuscript, we request an alternative reviewer to evaluate our paper and responses.  

Among other problems described below, Reviewer #2 misclassified our work into 
the category of ecological “aggregation” of “micro-dynamics” into “macro-dynamics”, a 
topic well trodden by previous researchers in ecology. We are very aware of the studies 
mentioned without citation by the reviewer. Briefly, the so-called “aggregation” 
approach, as studied in ecology (and also in theoretical economics), is a mathematical 
technique of dimensional reduction. This approach assumes that the micro-dynamics is 
available for “aggregation” so that the resultant macro-dynamics retains as much of the 
micro-dynamical functional responses as possible. Such work falls broadly in the 
category of “reduced order modeling”, a topic on which we have recently published a 
number of papers (e.g., Liu et al., 2016; Pau et al., 2014, 2016). In stark contrast, the 
study we present here describes an approach to formulate the micro-dynamics in a 
physically consistent manner. Therefore, the reviewer’s primary summary criticisms are 
irrelevant to our study. Further, the reviewer’s comments contain several blatant errors, 
which we detail below.  
 
Comment: In this paper, the authors go through many different formulations of enzyme 
kinetics in an attempt to ‘scale’ kinetics from a single enzyme system to a metabolic 
network consisting of 10’s to 100’s of reactions. The paper doesn’t have a good 
introduction and there is little motivation for why it’s so critical to be able to ‘scale’ 
enzyme reaction kinetics other than it’s computationally intensive to simulation a bunch 
of equations instead of one. Reducing dimensionality will always make life easier, but 
it’s not clear that anyone in a real world modeling situation would even be in a position to 
try to translate kinetics for 10’s to 100’s of reactions for soil organic matter 
decomposition to reduced set of reactions. In a real network, there will be feedbacks 
between reactions but all are considered independent in this manuscript. 
Response: Given reasonable space constraints for journal articles, we did not detail the 
huge literature on enzyme kinetics relevant to soil biogeochemistry. However, we 
included sufficient references (Allison, 2012; Bouskill et al., 2012, Grant et al., 2016; 
Riley et al., 2014; Sulman et al., 2014; Tang, 2015; Tang and Riley, 2013, 2015; Wieder, 
2013, 2014) on the topic to indicate that soil biogeochemical models are now in a 
position to include a wide range of biogeochemical reactions, which may very well 
exceed 100 reactions. For instance, the soil biogeochemistry module of the site- to 
regional-scale ecosystem model ecosys (e.g., Grant et al., 2015, 2016; Mekonnen et al. 
2016) represents a wide range of microbes, including heterotrophic aerobic bacteria and 
fungi, methanogens, methanotrophs, autotrophic ammonia oxidizers, autotrophic nitrate 
oxidizers, acetogen fermenters, and autotrophic and heterotrophic nitrogen fixers. The 
model also represents the aqueous chemistry of phosphorus dynamics that involves iron, 
calcium, carbonate, etc.  



We also never stated that our goal was to reduce the reaction network. Rather, we 
emphasized the need for formulation consistency between the many reactions in 
describing the substrate-consumer relationship, which is the first step in modeling soil 
biogeochemistry (as indicated in the title, abstract P1: L12-13, and throughout the main 
text). If formulation reductions were proposed, they should only be applied to 
substitutable substrates (as discussed in section 3 and also in Tang and Riley, 2013). For 
example, aerobic heterotrophic bacteria can feed on proteins, cellulose, carbohydrates, 
and starch; if the specific evolution of those chemical compounds is not of interest, we 
can regard them all as carbon substrates, which is the fundamental assumption that has 
been widely applied in the development of many soil BGC models (e.g., RothC model 
(Coleman and Jenkinson, 1996), CENTURY model (Parton et al., 1998)). A similar 
problem involving enzyme interactions with many substrates was also studied in Schnell 
and Mendoza (2000). Given soil microbes are competing and collaborating with each 
other to consume the many chemical substrates, our study is definitely relevant to 
modeling complex soil BGC networks. We also acknowledged that feedbacks between 
reactions are critical components of the soil BGC network (e.g., on P4: L13-17, we 
acknowledged that there are temporal and spatial scaling methods to cover those 
feedbacks). Overall, our formulation attempts to better resolve the interactions and 
feedbacks between reactions at the microbial uptake stage (i.e., the consumer-substrate 
interactions), which is a misunderstood or ignored topic in the literature (see the long 
review in Tang and Riley, 2013).  

Therefore, this reviewer’s comment both misses the point of our manuscript and 
mischaracterizes its relevance. To ensure readers who’re unfamiliar with soil 
biogeochemical modeling not to confuse our study with dimension reduction through so 
called “aggregation”, we added a new paragraph in page 4 in the revision to state 
specifically that we’re attempting to improve the microdynamics.   
  
Comment: The authors quickly jump into kinetic equation after equation with no clear 
goal and minimal to non-existant links between models/equations.  
Response: These comments are somewhat shocking given the manuscript’s theoretical 
development goals are given in the Title, Abstract (P1: L11-15), and Introduction (P4: 
L6-18, P10: L13-22, P11: L1-6). Clearly, we are proposing the SUPECA kinetics to (1) 
scale redox reactions in networks of mixed substrates and consumers; (2) consistently 
address the interactions between substrates and microbes at the substrate uptake stage in 
modeling soil biogeochemistry; and (3) demonstrate its applicability using a simple 
aerobic soil respiration problem.  
 
Comment: The authors never even clearly articulate why what they are presenting is 
better than anything else. The manuscript is incredibly hard to follow as well. It may be 
possible for the authors to distill some of this down into a coherent compelling message, 
but in its current form it’s not publishable. 
Response: This comment is again strange, given our substantial discussion in the 
Abstract (P1: L15-23, P2: L1-11), Introduction (P5-10), and sections 3, 4, and 5. 
Throughout our discussion, we also highlighted problems with the current formulations 
of soil BGC kinetics.  

For the editor and reviewer’s information, and to put the value of this work in 



context (i.e., “why it may be better than anything else”), the formulation we described in 
this paper follows the work described in Tang and Riley (2013), where we originally 
described the Equilibrium Chemistry Approximation. In this context, we note that Jinyun 
Tang received the Ecological Society of America’s Honorable Mention for the Gene E. 
Likens Award for this paper (indicating it, at least, may have value compared to other 
approaches). Further, the ECA concepts are actively being applied in site to global-scale 
modeling efforts (Zhu and Riley 2015; Zhu et al., 2016a,b; 2017), which we cite in the 
manuscript. We therefore believe these reviewer’s comments indicate a misunderstanding 
of our paper and the broader modern literature on numerical model representations of 
biogeochemical processes. 
 
Comments: Pg. 7, line 12: This doesn’t make sense. The whole idea is to consider a 
network of interactions, each with their own kinetics. Gardner, O’Neill, and Iwasa, 
among other did seminal work on aggregating model dynamics and establish good rules 
of thumb for when aggregation is reasonable. The problem the authors of this manuscript 
are trying to address is one of aggregation, not scaling. Furthermore, their expressions are 
incorrect. A sum can be expressed as the number of terms in the sum multiplied by the 
mean of the sum. In their case, each term is a product of a rate constant and a 
concentration, which means that impossible to make their substitution. At a given instant, 
it can work, but a soon as concentrations change their expression is invalid. 
Response: This comment is again a misreading of our work. First, we are addressing the 
substrate-consumer relationship, an important component in formulating the 
microdynamics; whereas the works by Gardner, O’Neill, Iwasa (see our listed reference 
on aggregation) and others are on aggregating the microdynamics when the latter is 
given. Second, we did not indicate that we are averaging nonlinear terms. Even when we 
sum (and average) the terms in equation (7), we state clearly that the kinetic parameters 
must be equal for such a summation (P9: L6). Throughout the paper, we used the 
summation and average rules according to standard practices widely used in mathematics 
and physics, and therefore this criticism appears baseless.  
 
Comments: Furthermore, there’s no way to average the nonlinear interaction between 
enzyme and substrate for multiple reactions. I tried looking up the partition principle and 
didn’t find anything, and the analogies with Dalton’s and Newton’s laws don’t make any 
sense. 
Response: First, we did not contend that we are averaging the nonlinear interactions 
between enzymes and substrates for multiple reactions. Second, we introduced and 
defined the “partition principle” on page 6, line 16. The concept is widely used in 
deriving macroscopic representations of complex phenomena in physics (e.g., Dalton’s 
law of partial pressures; superposition principle of electrostatic forces, angular moment 
etc.; Feynman et al, 1963), and we argue in this manuscript that it should be applied in 
developing representations of soil BGC dynamics. Third, we only apply averaging when 
the relationship is linear and there is a good conceptual understanding to support it (e.g., 
equation (7)). For instance, as we explained above, some models of soil organic matter 
decomposition aggregate different organic matter constituents (e.g., protein, cellulose, 
carbohydrates) into a single carbon pool, and still provide important scientific insights to 
the soil carbon cycle. 



 
Comment: Pg. 3, line 23: Wieder, not wider 
Response: Thanks for pointing this out. We corrected it in the revision. 
 
Comment: Pg. 6, line 2: dissociation 
Response:  Thanks for pointing this out. We corrected it in the revision. 
 
Comment: Pg. 6 line 7: r-K selection is only briefly mentioned in the Klausmeier and 
Litchman (2008) paper. 
Response: Yes, we agree, so we added a citation to Tilman’s work (Tilman, 1982) for 
readers interested in this topic. 
 
Comment: Pg. 7, eq. 2: Both terms are negative but dissociation should be positive 
Response: We think there is a misreading of equation 2. Only the first term is negative, 
the second term is positive and describes dissociation.  
 
Comment: Pg. 8, line 1: I have no idea what the nonsingularity principle is, and again, 
searching for it gave no results. The expression is really conservation of mass anyway. 
Response: We apologize that we did not originally provide a citation for this concept on 
page 8 (it is mentioned on Page 9, lines 1-3 and the singularity is defined in P2: L1-L3); 
we have now added references on the concept at the first appearance of the term in the 
revision (Schnell and Maini, 2000; Tang and Riley, 2013; Tang, 2015). 
 
Comment: Pg. 8, line 12: I don’t know what this means. Furthermore, the only difference 
between the two sides of the equation is that the r.h.s. just moves the half saturation 
constant around. They appear equal and there is no basis for why they wouldn’t be.  
Response: No, in equation (6) the term after the first equal sign is not equal to the term 
after the second equal sign, as we show below: 

Suppose there are two substrates, S1 and S2, with concentrations of 1 and 2 units, 
respectively; and half saturation constants of 1 and 2, respectively. Then, assuming all 
other parameters are of numerical value 1, the value after the first equal sign is 
1/(1+1)+2/(2+2)=1. However, the value after the second equal sign is 
(1/1+2/2)/(1+(1/1+2/2))=2/3. Therefore, they are not equal (i.e., 1 ≠ 2/3). Such a case will 
occur, for instance, in situations when both NH3 and 	NO3

−  are taken up by a microbe or 
plant to synthesize biomass. Only the term after the second equal sign will describe this 
uptake process consistently. A similar situation is discussed in detail in Schnell and 
Mendoza (2000).   

 
Comment: Litchman and Klausmeier (2008) don’t even mention Monod kinetics. It is 
unacceptable to incorrectly use references to justify assumptions or manipulations. 
Response: It seems the reviewer misunderstood the reference to Litchman and 
Klausmeier (2008). In their page 620, the second equation, which we copy below, is the 
Monod kinetics: 

		
uptake = v R( ) = vmaxRK +R

 



with 	R  is the substrate and 	K  is the half saturation constant.  
Even though Litchman and Klausmeier (2008) did not use the term “Monod 

kinetics”, they are clearly applying that approach. As the reviewer may be aware, Monod 
kinetics and Michaelis-Menten (MM) kinetics were proposed based on different 
empirical evidences. The Monod kinetics is purely empirical (Monod, 1949) and MM 
kinetics can be derived mechanistically (Briggs and Haldane, 1925). In soil 
biogeochemical modeling, the Monod and MM kinetics are used for modeling microbial 
substrate uptake, and under the assumption of no substrate-storage in microbial cells 
(which is valid under some restrictive conditions), the Monod kinetics and MM kinetics 
(or any substrate kinetics such as the SUPECA we present here) can reasonably represent 
microbial growth (Monod, 1949; Wieder et al., 2013, 2014; Tang and Riley, 2015). 
 
Comment: Pg. 9, line 3: When is it even reasonable to enzyme concentration approach 
infinity? 
Response: It is a common practice in deriving macroscopic representations of complex 
phenomena to ensure that the solutions are robust across a range of conditions. The term 
“approach infinity” is widely used in scientific literature to imply “as a state becomes 
large compared to another state” (e.g., see chapters on oscillators and electrostatics in 
Feynman et al., 1963). In biogeochemistry, for example, such a situation exists in vivo 
conditions inside an organisms’ cell (e.g., Schnell and Maini, 2000), or when mineral 
surface interactions are represented analogously to enzyme kinetics (e.g., adsorption is of 
Langmuir type). In such situations, the ratio of enzyme and substrate concentrations 
becomes very large (i.e., approaches infinity).  
 
Comment: Pg. 9, line 5: There is no paper that I can find that matches the Murdock 
reference, and one published in the same year is completely unrelated. This is a very 
disturbing pattern of misrepresentation of the literature. I basically can’t follow the rest of 
page 9 and I have no idea what parametric sensitivity is. 
Response: It appears the reviewer was searching for a citation by “Murdock”, when the 
paper we cited is by “Murdoch”. The reviewer’s assertion of a “disturbing pattern of 
misrepresentation of the literature” is ridiculous and unprofessional, considering that 
he/she could have simply gone to the reference list at the end of our manuscript and 
found the citation. 

In 1973, William W. Murdoch published two papers, one is “The functional 
response of predators”, and the other is “Predation by Coccinellid Beetles: Experiments 
on Switching” which he co-authored with J.R. Marks. The first paper is the one we cited 
(and is listed in the references).  

The term “parametric sensitivity” is a widely used term in numerical modeling, 
and we cited a recent paper on the topic in the original manuscript. However, there are 
many other recent publications applying this term; we have therefore added some of 
those citations (e.g., Qian et al., 2015; van Werkhoven et al., 2009).  
 
Comment: Starting in section two, the ‘derivations’ seem to be ok, but they are trivial 
algebra. It’s easy to start with any reaction diagram, assume quasi steady state and derive 
equations. However, they still seem to retaining more dynamics that is typical because 
the substrates/reactants A and B are changing over time. 



Response: Our careful derivation attempts to present nuances to readers, and indicate 
clearly where critical assumptions are being made. Since one of our clearly stated goals is 
to formulate a consistent set of reaction kinetics for soil BGC, we believe having a 
consistent derivation formulated in the peer-reviewed literature is important. Further, we 
used this derivation to describe possible problems with other approaches in characterizing 
biogeochemical kinetics, such as dual-Monod kinetics and synthesizing unit kinetics. 
Therefore, our derivation will help readers to understand the uncertainties behind using 
those kinetic formulations for their modeling analyses. In the same spirit, throughout the 
paper, we have clearly reported that our new approach is only a better approximation to 
the law of mass action (e.g., section 4 and also see Tang, 2015), and should not be 
regarded as accurate for all conditions (a situation that is discussed in detail by Pedersen 
et al., 2008, which we have cited in the revision).  
 
Comment: Pg. 17, lines 2-3: I have no idea what this sentence means. 
Response: The phrase “MM kinetics ignores the mass balance constraint of substrate” 
simply means: in the derivation of MM kinetics, no constraint is placed on the substrate 
mass balance. Tang (2015) described this condition and discussed its implications, as 
have others (Borghans et al., 1996; Tang and Riley, 2013; Maggi and Riley, 2015). We 
have added these other citations to the revised manuscript to buttress this point. However, 
as the subsequent sentences explain, our point is that a similar problem may be happening 
in Dual Monod and Synthesizing Unit kinetics formulations.  
 
Comment: Pg. 17, line 15 (and appendix): I have no idea what their ‘first order closure 
approach’ is. The appendix isn’t really a help here. 
Response: In the revision, we added some explanation to the “first order closure 
approach” and a citation to Tang and Riley (2013) where the approach was first applied 
to enzymatic chemical kinetics. We also note that the first order closure approach has 
been applied in many other fields, and have added citations (Shankar, 1994; Tang et al., 
2007) to the revised manuscript.  
 
Comment: Pg. 19: The problem with trying to average over a bunch of nonlinear 
interactions seems to render this derivation incorrect. 
Response: As we discussed above, we are not trying to “average over a bunch of 
nonlinear interactions”. Given that Reviewer #1 understood this important point, we are 
at something of a loss to address Reviewer #2’s misunderstanding. Nowhere in the 
manuscript did we state we are “trying to average over a bunch of nonlinear interactions”, 
so it is not clear where he/she developed that perception. 
 
Comment: Data examples and figures: By this point, I am totally lost and quite skeptical 
of whether their derivations are correct. The comparisons with data are poorly motivated 
and described so it’s not possible to even know what we should be taking away from the 
exercise and why. 
Response: Although we appreciate the reviewer’s taking his/her time to read through our 
manuscript, we believe that this reviewer is an inappropriate choice, given his/her (1) 
large number of misunderstandings, (2) fundamentally incorrect criticisms, and (3) poorly 
constructed suggestions for improving the manuscript. In other contexts we would be 



happy to discuss the details of the approach with the reviewer, but given that this is a 
manuscript review, we request the editor to find another reviewer who’s more familiar 
with biogeochemistry and approaches to develop conceptual and numerical models of 
complex reaction networks. 
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