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Abstract 7 
 8 
Recently, Particle Swarm Optimization (PSO) techniques have attracted many 9 
researchers to optimize model parameters in several fields of research. This article 10 
paper explains, for the first time, how to interface the hydroPSO R optimization 11 
package and PEST with the PHREEQC geochemical model, version 2.3.1. The 12 
main theme involved the sorption of low concentration uranium on quartz at 13 
different pH. Sorption of metals on minerals is a key process in treatment water, 14 
natural aquatic environments, and other water related technologies. Sorption 15 
processes can be simulated by means of surface complexation models. However, 16 
determining thermodynamic constants for surface species from batch experiments 17 
requires robust parameter estimation tool that does not get stuck in local minima. 18 
In this work, uranium at low concentrations was sorbed on quartz at different pH. 19 
Results show that hydroPSO delivers more reliable thermodynamic parameter 20 
values than PEST when both are coupled to PHREEQC using the same 21 
thermodynamic input data (Nair et al., 2014). Besides, Postpost-processing tools 22 
included in hydroPSO are helpful for the interpretation of the results. Thus, 23 
hydroPSO is a recommended as an optimization tool for PHREEQC with respect 24 
to inverse modeling to determine reliable and meaningful thermodynamic 25 
parameter values. 26 
 27 
 28 
Introduction and Scope 29 
 30 
Particle Swarm Optimization technique (PSO) is an evolutionary optimization 31 
approach proposed by Eberhart and Kennedy (1995) and was influenced by the 32 
activities of flocks of birds in search of corn (Kennedy and Eberhart 1995, and 33 
Eberhart and Kennedy 1995). PSO and genetic algorithms (GA) shares a few 34 
similarities (Eberhart and Shi 1998). GA has evolutionary operators like crossover 35 
or selection, while PSO does not have it (Eberhart and Shi 1998). Recently, PSO 36 
28 has a wide range of applications, including water resources (Zambrano-37 
Bigiarini and Rojas, 2013, Abdelaziz and Zambrano-Bigiarini 2014), geothermal 38 
resources (Ma et al., 2013; Beck et al., 2010), structural design (Kaveh and 39 
Talatahari, 2009; Schutte and Groenwold, 2003), economics and finance (Huang et 40 
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al., 2006; Das 2012), and applications of video and image analysis (Donelli and 41 
Massa, 2005; Huang and Mohan, 2007). For example, the groundwater model 42 
MODFLOW 2000/2005 was linked with PSO to estimate permeability coefficients 43 
(Sedki and Ouazar, 2010) and a multi-objective PSO code was used to derive a 44 
rainfall runoff model parameters (Gill et al.,2006). Notwithstanding PSO recent 45 
popularity, the PSO has never been used to calculate the parameters in surface 46 
complexation model (SCMs) simulating sorption behavior of metal and metalloids 47 
on mineral surfaces. Hence, this article attempts to examine the efficiency and 48 
effectiveness of PSO for parameter estimation of a surface complexation model as 49 
is PHREEQC (Parkhurst and Appelo, 1999).  50 
 51 
Today, a number of PSO software codes exist such as MADS (Harp and 52 
Vesselinov, 2011; Vesselinov and Harp, 2012) and OSTRICH (Matott, 2005) , 53 
with most of the codes using the basic PSO formulation 54 
developed in 1995. However, in this paper the latest Standard Particle Swarm 55 
Optimization, SPSO2011 (Clerk, 2012; Zambrano-Bigiarini et al., 2013). This is 56 
same as in the hydroPSO R package (R Core team, 2016) version 0.3-3 57 
(Zambrano-Bigiarini and Rojas, 2013; 2014). hydroPSO is an independent R 58 
package that includes the latest Standard PSO (SPSO-2011), which was 59 
specifically developed to calibrate a wide range of environmental models. In 60 
addition, the plotting functions in hydroPSO are user-friendly and aid the numeric 61 
and visual interpretation of the optimization results. The source code, installation 62 
files, tutorial (vignette), and manual available on http://cran.r-63 
project.org/web/packages/hydroPSO. hydroPSO is used in this paper, for the first 64 
time, to estimate the parameters of a surface complexation for U(VI)-Quartz 65 
system, to properly capture the non-linear interactions between the model 66 
parameters. The aim of this article is to examine the versatility of hydroPSO as 67 
parameter estimation tool for geochemical modeling with PHREEQC -3.1.2. 68 
 69 
 70 
Model description 71 
 72 
PHREEQC version 2.3 (Parkhurst and Appelo, 1999) is used to model the sorption 73 
and the database of Nuclear Energy Agency thermodynamic NEA_2007 (Grenthe 74 
et al., 2007), as well as the LLNL database (Lawrence Livermore National 75 
Laboratory) is used to model sorption. Both databases were modified by set 76 
constant values for MUO2 (CO3)3

2- and M2UO2 (CO3)3
0 species (M equals Ca, Mg, 77 

Sr) obtained from the work of Geipel et al. (2008) and Dong and Brooks (2006, 78 
2008). PHREEQC is a geochemical model code, capable of simulating sorption, 79 
surface complexation, and other types of reactions. Surface Complexation 80 
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Modelling (SCM) is considered a suitable tool to describe the processes at liquid-81 
solid interfaces (Huber and Lützenkirchen, 2009). SCM has been widely employed 82 
to simulate the metals sorption from aqueous solution depending on pH and 83 
concentration of the solution as well as ionic strength and redox conditions (Davis 84 
et al., 2004; Štamberg et al., 2003; Zheng et al., 2003). Thus the result of group 85 
reactions within the aqueous species in the surface of the sorbent and the bulk 86 
solution, that leads to the surface complexes formation. The constants of surface 87 
sorption reaction (log K) values are inevitable for SCM. Such constants are 88 
universal constants, not site-specific, and hence transferable. There are different 89 
SCMs including two layer model (GTLM), non-electrostatic model (NEM), 90 
constant capacitance model (CCM), diffuse-layer model (DLM), modified triple-91 
layer model (modified TLM). Here, a generalized two layer model (GTLM) 92 
(Dzombak and Morel, 1990) was used to simulate the sorption behavior of U(VI) 93 
on quartz. The GTLM was used instead of other models because it is relatively 94 
simple and can be used in a wide range of chemical conditions. A comprehensive 95 
review of GTLM is presented in Dzombak and Morel (1990). Quartz is a 96 
nonporous mineral and non-layered, and therefore, the actual area of surface is 97 
supposed to be equal to the specific surface area. In this study, the surface of quartz 98 
is considered as a single binding site and takes the charge for every surface 99 
reaction. The sorption reactions and log K values are related to the aqueous species 100 
and thus depend on the thermodynamic database used. Uranyl carbonate 101 
complexes—(UO2)2CO3 (OH)3

ˉ, UO2(CO3)2
2ˉ and UO2(CO3)3

4ˉ are the dominant 102 
species under our experimental conditions. Therefore, the surface complexation 103 
reactions for quartz were calculated with respect to these species.  104 
 105 
The sorption of U (VI) on quartz were investigated and discussed by 80 (Huber 106 
and Lützenkirchen 2009). However, formation of Mg-, Ca-, and Sr–Uranyl-107 
Carbonato complexes show a significant impact on sorption of uranium on quartz. 108 
This was studied by Nair and Merkel (2011) in batch experiments by adding 10 g 109 
of powdered quartz to 0.1 liter of water containing low U concentrations (0.126 9 110 
10-6 M) in the absence and existence of Mg, Sr, and Ca (1 mM) at pH of between 111 
6.5 and 9 in steps of 0.5. NaHCO3 (1 x 10-3 M) and NaCl (1.5 x 10-3 M) were used 112 
as ionic-strength buffers. The low U concentrations were used to avoid 113 
precipitation of Ca-U-carbonates. In the non-existence of alkaline earth elements, 114 
the percentage of uranium was sorbed on quartz ca. 90% independent from pH. In 115 
the presence of Mg, Sr, and Ca, the percentage of sorption of uranium on quartz 116 
declined to 50, 30, and 10%, respectively (Nair and Merkel, 2011).  117 
 118 
Table 1 displays the parameter ranges used to optimize the 6 parameters selected to 119 
calibrate PHREEQC based on the work of Nair et al. (2014). 120 
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 121 
 122 
Computational implementation 123 
 124 
Inverse modeling is a procedure issue for modelers as a result of the numerous 125 
uncertainties in model parameters and observations (e.g., Carrera et al., 2005, 126 
Beven, 2006). The hydroPSO R package v0.3-3 (Rojas and Zambrano-Bigiarini, 127 
2012; Zambrano-Bigiarini and Rojas, 2013; 2014) is a model-independent 128 
optimization package, which has been successfully applied as calibration tool for 129 
both hydrogeological and hydrological models, requiring no instruction or template 130 
files as UCODE (Poeter et al., 2005, Abdelaziz and Merkel, 2015) and PEST 131 
(Doherty, 2005; 2013) do.  132 
 133 
In order to couple hydroPSO with the PHREEQC geochemical model, three text 134 
files have to be prepared by the user to handle data transfer between the model 135 
code and the optimization engine: (i) 'ParamFiles.txt', which describes the names 136 
of a set of parameters to be estimated and locations in the model input files to be 137 
utilized in the inverse procedure, (ii) 'ParamRanges.txt', which defines the 138 
minimum and maximum values that each selected parameter might have during the 139 
optimization, and (iii) ‘PSO_OBS.txt’, which contains the observations that will be 140 
compared against its simulated counterparts. In addition, a user-defined R script 141 
file ('Read_output.R') have to be prepared, containing the instructions to read 142 
model outputs, while an R script template provided by hydroPSO (Rojas and 143 
Zambrano-Bigiarini, 2012) has to be slightly modified by the user in order to carry 144 
out the optimization.  145 
 146 
In contrast to coupling PEST with PHREEQC, it was required that PEST be run 147 
with PHREEQC. PEST needs ASCII output and input files. The four files required 148 
were: i) template files (*.tpl), ii) instruction files (*.ins), iii) a main control file 149 
(*.pst), and iv) a batch file to execute PHREEQC and PEST(*.bat). Template files 150 
were built to modify the input files for PHREEQC with other values while an 151 
instruction file was employed to extract the simulated values from the output file 152 
for PHREEQC. The main control file includes a model application to run, the 153 
observations, parameters to be estimated, control data keywords, and etc. Details of 154 
PEST are contained in the manual (             ). Figure 1 shows the key files used to 155 
couple PHREEQC with hydroPSO, and explains the flowchart and files involved 156 
in the inverse modelling of the surface complexation constants for the U(VI) 157 
sorption model. 158 
 159 
 160 
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Figure 1: Flow chart with files involved in inverse modeling of surface 161 
complexation constants for uranium carbonate (U(VI)) species on quartz with 162 
the PHREEQC geochemical model. 163 
 164 
 165 
For numerical optimization, equation 1 was used to compute the residual sum of 166 
the squared (RSS or SSR): 167 
 168 
     n 169 

SSR = Σ (Ci
s-Ci

o)2         (1) 170 
              i=1 171 
 172 
This equation (1) was then utilized to compute the goodness of fit (GoF) between 173 
the corresponding model outputs (Cs ) and observed values (Co) for every time 174 
step i. After some initial trials, the number of maximum iterations T was set to 200 175 
and the number of particles used to search for the minimum RSS in the parameter 176 
space was fixed at 10 (i.e., 2000 runs of the model). The rest of parameters were 177 
set to the default values defined in hydroPSO.  Detailed and additional information 178 
on SPSO 2011 and hydroPSO are contained in Clerc (2012), Zambrano-Bigiarini 179 
et. al. (2013), Zambrano-Bigiarini and Rojas (2013). Finally, all the input files 180 
required for running PHREEQC and hydroPSO can be found in the supplementary 181 
material (https://doi.org/10.5281/zenodo.803874), including all the optimization 182 
results. 183 
 184 
 185 
Results and Discussion 186 
 187 
One of the vital and useful approaches to evaluate the efficacy of model 188 
performance is through plotting the simulation against observed values (visualizing 189 
outcome of model). The variable observed sorption ratio and the calculated 190 
sorption ratio were compared in Figure 2. It is clear that there is a very good fit 191 
between the calculated and the experimentally observed values. The coefficient of 192 
determination (r2), in this case almost 0.89 indicates a good match between the 193 
observed and calculated values (Figure 2). Only 100 iterations were enough to 194 
achieve the region of the global optimum, i.e., 100 x100 =1000 model runs. The 195 
rest iterations numbers were placed to refine the search as shown in Figure 3. 196 
 197 
 198 
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Figure 2: Scatter plot with the experimentally observed and calculated values 199 
of uranium carbonate (sorption %). 200 
 201 
Figure 3: Evolution of the normalized swarm radius (δ norm) and the global 202 
optimum (SSR) over 200 iterations. 203 
 204 
 205 
Figure 3 shows the evolution of the global optimum (best model performance for a 206 
given iteration, i.e., smallest SSR) and the normalized swarm radius (δnorm, a 207 
measure of the spread of the population flying over the range of search-space) 208 
versus the iterations number. One may observe that both δnorm and the global 209 
optimum become smaller with an increasing iteration number, which indicates that 210 
the main particles are “flying” around a small portion of the solution space. The 211 
optimum value was achieved when the SSR was ca. 2.52. Figure 4 presents the 212 
values of ………..sampled during optimization.  213 
 214 
Figure 4: Boxplots for calibrated parameter. The horizontal red lines indicate 215 
the optimum value for each parameter. The bottom and top of the box 216 
demonstrate the first and third quartiles, respectively. The horizontal line within 217 
the box stands for the median. The points outside the notches are considered to 218 
be outliers, where notches are within ±1.58IQR/sqrt(n), while IQR represents the 219 
interquartile range and n the number of points. The horizontal red lines 220 
represent  the optimum value found during optimization for each parameter. 221 
 222 
 223 
The SSR was chosen as an indicator for goodness of fit (GoF). Two dimensional 224 
dotty plots in Figure 5 depict the goodness of fit achieved by different parameter 225 
sets. They are suitable for identifying parameter ranges, leading to high or roughly 226 
the same model performance (Beven and Binley, 1992).  227 
 228 
Figure 5 shows the model performance as function of the interaction of different 229 
parameter ranges. This figure was used to identify regions of the solution space 230 
with good and bad model performances. 231 
 232 
Figure 5: Quasi three-172 dimensional dotty plots. The (quasi) three-233 
dimensional dotty plot shown in Figure 5 is a projection of the values of pairs of 234 
parameters onto the model response surface (goodness-of-fit value). Parameter 235 
values where the model presents high performance are shown in light-blue (high 236 
points density), whilst the parameter values where the model shows low 237 
performance are shown in dark-red (low points density). 238 
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 239 
 240 
Visual inspection of Figure 5 shows a good exploratory capability of PSO because 241 
the particles are well spread over the entire range space. It is clearly shown that the 242 
parameter samples are denser around the optimum value (lowest SSR), indicating a 243 
low standard deviation around the optimum value. Nevertheless, the optimum 244 
value obtained for K3 and K2 indicated the particles were converging into a small 245 
region of the solution space.  246 
 247 
Figures 6 and 7 give a graphical summary for calibrated parameters.  248 
 249 
Empirical Cumulative Density Functions (ECDF) in Figure 6 shows the sampled 250 
frequencies for the six parameters.  251 
 252 
 253 
 254 
Figure 6: Empirical cumulative density functions against each parameter of 255 
parameter values. The horizontal gray dotted lines show a median of the 256 
distribution (cumulative probability 180 equal to 0.5), while the vertical gray 257 
dotted lines depict a cumulative probability of 0.5, and its value is displayed in 258 
the top of every figure. 259 
 260 
Figure 7: Histograms of calibrated 188 parameter values. The vertical red line 261 
point out the optimum value achieved for each parameter. The histograms and 262 
ECDFs show near-normal distributions for K1 and K2, while k4 and k5 follow a 263 
skewed distribution with more sampled values near the upper boundary. 264 
 265 
Figure 8 illustrates the correlation matrix among K values and model performance 266 
(SSR), with horizontal and vertical axes displaying the ranges used for the 267 
calibration of each parameter. The figure show that highest correlation coefficient 268 
is among the measure of model performance (SSR) and k4, k6, 193 and k3. In 269 
addition, a higher correlation coefficient was observed between k4 and k5, k3 and 270 
k4, and k1 and k6. 271 
 272 
Figure 8: Correlation matrix among model performance (SSR) and 196 273 
calculated parameters. Vertical and horizontal axes illustrate the physical 274 
range utilized for parameter identification. *** stands for a p < 0.001 ; ** 275 
stands for p < 0.01, according to level of statistical significance 276 
 277 
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Figure 9 shows the model output using hydroPSO fitted log-K values and the 278 
monitored sorption ratio. 279 
 280 
Figure 9: Observed and simulated sorption of uranium in quartz vs pH with 281 
both PEST and hydroPSO calibrated log-k values. 282 
 283 
It is worthwhile to mention that the surface complexation constants for the 284 
equations 1, 2, and 4 are more important and the equations that are less important 285 
are 3, 5, and 6 in optimizing the “log K” values. It proves that UO2 (CO3)3

4–, UO2 286 
(CO3)2

2–, and UO2OH+ are the dorminant species sorbed on quartz. 287 
 288 
 289 
From the optimized model, the surface complexation constants for the equations 2 290 
and 4 was optimized to be 21.18 and 3.229 respectively, which is higher than the 291 
electrostatic (ES) and nonelectrostatic (NES) models, while the optimized value for 292 
equation 1 is 25.156, which is higher than the NES model and almost the same as 293 
the ES model. 294 
 295 
Comparing the results of optimized log-K values with hydroPSO with previous 296 
work of Nair et al. (2014). PEST was applied for the similar case and from the 297 
same data, it can be shown that the log k values obtained with hydroPSO are better 298 
than those obtained with PEST. The main reason is that PSO is a global 299 
optimization technique, which searches for optimum values in the whole 300 
parameters space, while PEST searches on a neighborhood of the initial solution. 301 
In particular, PEST carries out inverse modelling by computing value of parameter 302 
that minimizes a weighted least-squares objective function via Gauss-Marquardt-303 
Levenberg non-linear regression method (Marquardt, 1963). Actually, a major 304 
drawback of PEST, as of all gradient-based techniques, is the dependency of the 305 
quality of the optimization results upon the initial point used for the optimization, 306 
which might lead to a local optimum rather than the global one. Thus, PSO 307 
techniques offer promising possibilities for similar surface complexation and 308 
reactive transport applications in hydrogeology and hydrochemistry. 309 
 310 
 311 
Conclusions 312 
 313 
The coupling of hydroPSO and PHREEQC was successfully done to estimate 314 
surface complexation constants for uranium (VI) species on quartz. The open-315 
source hydroPSO R package was confirmed to be a robust tool for inverse 316 
modeling of surface complexation models with PHREEQC and allowed a prompt 317 
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evaluation of the calibration results. Furthermore, thermodynamic values obtained 318 
with hydroPSO provided a better match to observed sorption rate in comparison to 319 
those obtained with PEST, using the same input data. This is documented by the 320 
higher coefficient of determination for the results based on hydroPSO.  321 
 322 
Finally, the paper basically treats the coupling of a parameter estimation code with 323 
PHREEQC. A limited data set was used from the work of Nair and Merkel (2011) 324 
and Nair et al. (2014) to demonstrate the ability of PSO as an optimizer for a 325 
geochemical model as PHREEQC. The examples were used only for testing the 326 
coupled-codes to show the link between PHREEQC and hydroPSO. Indeed, it is 327 
obvious that more comprehensive data sets in the future are needed to get a best-fit 328 
and smaller degree of uncertainty. 329 
 330 
Data availability 331 
 332 
PHREEQC is available in the following 333 
http://www.hydrochemistry.eu/ph3/index.html. Source code, tutorials, and 334 
reference manual of hydroPSO can be obtained from https://CRAN.R 335 
project.org/package=hydroPSO. The PHREEQC model input files along with the R 336 
scripts used for coupling it with hydroPSO and the model outputs can be obtained 337 
from the Zenodo repository (https://zenodo.org/record/803874#.WTigbY26zIV). 338 
 339 
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