
Authors’ response to the Referees 
For clarifying our answers to the reviewers’ comments, the following scheme is used: 
Comments of the reviewers are denoted in blue while the authors response is given in black. 
The changes made to the manuscript in response to the reviewers comments have been 
appended. 
 
It should also be noted that the title of the paper has been changed to “A method to 
encapsulate model structural uncertainty in ensemble projections of future climate: EPIC 
v1.0” in reference to Short Comment #1.  
 
Anonymous Referee #1  
 
We would like to take this opportunity to thank the reviewers for their thorough review of this 
paper. We recognize the value of their time and appreciate the improvements in our paper 
that this review has led to. 
 
Received and published: 8 May 2017  
 
In this paper the authors have developed a method to encapsulate structural uncertainty  
in ensemble projections of future climate by combining regional climate model  
output with that from a simple climate model. The aim is produce a large ensemble  
of climate variables representing that which would be produced from a global climate  
model if it weren’t made impossible by computational demands. A small ensemble of  
climate variables (T_min and T_max) and annual mean global temperature is produced  
from the regional climate model. The relationships between the climate variables and  
temperature are used to produce a large ensemble of the climate variables from the  
more readily available annual mean global mean temperature (simulated in the simple  
climate model). Observations are used to provide climatology, weather variability and  
maintain spatial coherence to the predictions. I think the underlying method that has  
been developed is interesting and would benefit the scientific community if published,  
my concern about publishing in GMD is that this paper is about a method rather than  
a model. 
 
We agree that the paper is more about a method than a model but it is a method that 
extends the utility of regional climate models and so we felt that it would still be of 
considerable interest to the modelling community. We therefore felt that GMD would still be a 
suitable vehicle for communicating this method to the target audience. 
 
If the method has been developed such that it is a model in itself then the GMDD  
paper needs to be focussed on this and it requires more discussion about how users  
will run the model beyond what is presented in the paper, particularly with the new climate  
variables that will be included, how a new region is considered, how a new RCP is used and 
what will happen to the model when developments to the simple climate model and 
global/regional climate model are made. It may perhaps be better placed in  
a journal such as ‘Advances in Statistical Climatology, Meteorology and Oceanography  
(ASCMO)’.  



 
We believe that it would be best to defer to the editor regarding whether this paper is best 
suited for publication in GMD or elsewhere. 
 
I will continue the review based on the method development.  
 
General comment:  
 
As a method I think this is a neat way to produce a large ensemble of climate variables  
at a regional level that would otherwise be unavailable and attempting to encapsulate  
the structural uncertainty and weather variability. In some places I find the method  
hard to follow and the paper needs clarity. In some places I think it would benefit from  
further equations to back up the text. I would also like to see more discussion on how  
parametric uncertainty could be included or why it is not deemed necessary. I would  
also like to see how additional RCPs are included in the method – are they included in  
the final PDFs or do you envisage separate PDFs for each scenario?  
 
Particular points:  
 
1. Introduction:  
There is not enough of a literature review here. In particular, the UK Met Office have  
developed methods to produce probabilistic climate projections with a similar aim to this  
Paper. 
 
We have followed the reviewers suggestions and look more widely for existing papers that 
support, or align with, our paper, and have cited an additional 7 papers that relate to our 
work. 
 
Please discuss how this work achieves the goal differently. It would be good  
to see the work of Tebaldi and Knutti referenced here too discussing the difficulties in  
producing probabilistic information from multiple models.  
In particular, the following papers should be referenced and discussed.  

● Murphy, J. M. et al. A methodology for probabilistic predictions of regional climate 
change from perturbed physics ensembles. Phil. Trans. R. Soc. A 365, 1993–2028 
(2007). 

● Sexton, D., Murphy, J., Collins, M. & Webb, M.Multivariate predictions using 
imperfect climate models: Part 1 outline of methodology. Clim. Dynam. 
http://dx.doi.org/10.1007/s00382-011-1208-9 (2011).  

● Harris, G. R., et al. "Probabilistic projections for 21st century European climate." 
Natural Hazards and Earth System Sciences 10.9 (2010): 20092020.  

 
We have cited and discussed the pertinent features of the papers mentioned by the 
reviewer. However, we decided not to cite the review paper by Tebaldi and Knutti (2007) as 
their study focuses on multi-model ensembles, which is a different approach to generating 
probabilistic projections of climate from the methodology presented in our paper. With citing 



the other studies, we have included an overview of other methods that have been used in 
the past to generate climate projection. 
 
Line 2: ‘will correctly simulate that trajectory’. I think the inclusion of ‘correctly’ is  
necessary since all climate models are attempting to simulate this trajectory.  
Corrected. 
 
2.1 Regional Climate Model  
How dependent on the RCM are the relationships that are established? Would the  
relationships be expected to change with a new RCM?  
The relationship between the predictors and the predictants is linear, and the regression 
model fit coefficients should, ideally, be robust properties of the climate system and should 
not depend on the RCM being used. However, to accommodate the spread of sensitivities of 
climate variables to changes in global mean temperature due to different model 
parameterisations, we combine the obtained relationships from different RCM simulations as 
described in the paper. 
 
Page 3, Line 10: What does ‘adequate’ mean? 
The resolution of the RCM is sufficient to describe the large scale processes New Zealand 
faces. 
 
Page 3, Line 21: ‘The model simulates all atmospheric and land surface processes’. There 
are missing processes and those that are included are subject to uncertainties – is the 
method robust to this?  
In this study we used simulations from a single RCM which was forced by a number of 
different AOGCM realizations (different AOGCM boundary conditions for each simulation). 
Therefore, if the processes are not included in the RCM then these will not impact the 
structural uncertainties of the ensemble. The missing processes and uncertainties in 
AOGCM models are what play a role in determining the structural uncertainty in the 
ensemble. 
 
The effect of the different processes and model parameterisations of RCMs could be 
assessed by applying this method using a training set which included a number of different 
RCMs. The methodology would still hold. 
 
Page 3, Line 26: What is the implication of the remaining bias?  
The RCM data are used to model how the variable of interest and its variability change over 
time, while the baseline climatology is obtained from observations. The static and time 
varying components of the ensemble members are generated separately. Any remaining 
bias in the RCM data is removed when anomalies are calculated therefore it does not 
influence the ensemble members. 
 
2.2 Simple climate model  
Is MAGICC the only such model? How is it known to simulate annual mean global  
mean temperature adequately? Are the 19 AOGCMs and 10 carbon cycle models  
defined by MAGICC or could a user change what is included? 



MAGICC is an open access model, publicly available from (incl. website) which has been 
widely used in the scientific community, but is not the only simple climate model that is able 
to produce annual mean global mean temperature. The tuning files are provided with 
MAGICC, but if the user needs additional tunings (other AOGCMs or carbon cycle 
combinations), additional model tunings can be created. 
 
Page 4, Line 2: It is you that considers the 190 simulations as equally probable. ‘We  
consider the resultant 190 different ‘tunings’ for MAGICC to be equally probable.’ Could  
a user make different decisions? 
Yes, a user could make different decisions if they had additional insight into which 
simulations could be more probable than others. The method we have developed can easily 
accommodate this more sophisticated approach. For the purposes of demonstrating our 
methodology, we have simply followed the methodology of Reisinger, A.; Meinshausen, M.; 
Manning, M. and Bodeker, G., Uncertainties of global warming metrics: CO2 and CH4, 
Geophysical Research Letters, 37, L14707, doi:14710.11029/12010GL043803, 2010. We do 
not have additional insight from the MAGICC team as to which tuning files, both for the 
AOGCM emulation, and for the carbon cycle emulation, would be more probable than others 
and so could not encompass such additional information in our demonstration of the 
methodology. But there is no reason why that would not be possible if that information was 
available. 
 
Page 4, Line 3: What does ‘some’ mean? Since the title of the paper states that the 
structural uncertainty is encapsulated this needs explaining. 
The annual mean global mean temperatures from MAGICC do not include inter-annual 
variability. An additional sentence has been added to the manuscript clarifying this limitation. 
 
Page 4, Line 7: This is the first mention of ‘local’ -I think this should be included earlier as it’s 
an important point. Earlier, X is used. It would add clarity to define X better earlier on and 
use X here and in future.  
We have made this addition. 
 
2.3 Virtual Climate Station Network  
Is this the best observational dataset beyond New Zealand?  
No. The VCSN data set is for New Zealand only - we have now clarified that in the paper. 
People wanting to deploy this method for other countries would need to source their own 
version of such a data set. 
 
3. Methodology  
This section would benefit from some equations to clarify the text – especially right at  
the beginning to go with the bullet points.  
We feel that adding additional equations at this point in the manuscript would likely confuse 
readers. The following sentence states that more detailed descriptions are given below and 
the purpose of this section is to provide a high level overview of the methodology. 
 
Why is the period 1960-2100 used?  



Once the model has been trained on RCM data, which span 1971-2100, ensemble members 
can be generated over any reasonable timeframe for which SCM output can be produced. 
This assumes that the climate system continues to respond linearly, which may not be true if 
applied under conditions well outside those for which the model was trained on. The period 
1960-2100 was chosen arbitrarily to suit our later analysis.  
 
Page 4, Line 27: ‘one or more RCM simulations’ – I don’t quite understand how the  
RCM simulations are being used here? Later it says you use five – what is the benefit of  
five and how did you choose these five? How could a user choose a different number?  
The methodology is agnostic to the number of RCM simulations available. The 5 simulations 
that we used were produced using the same model and were all that were available for this 
study at the time of writing. The uncertainty in the response of the RCM model can be 
explored even further if more RCM simulations were available. 
 
Page 4, Line 28: You haven’t defined alpha yet so this is confusing. Can you state  
what the sampling of these alpha values is representing instead?  
We have added a clarifying sentence. 
 
Page 5, Line 2: ‘valid for any GHG emissions scenarios’ – is it valid if the regression isn’t 
robust? How can a user validate this if they change the GHG scenario?  
No, the method should only be performed if a robust regression fit is obtained. This caveat 
has been added to the manuscript. 
 
Page 5, Line 2: Why is the anomaly calculated to the 2000-2010 baseline? You later say it is 
rather short so please say why you have chosen it.  
The baseline period was chosen with respect to the application for which we used the data. 
We were interested in assessing how maximum and minimum surface temperatures change 
over the 21st century. A sentence describing this choice of the baseline period was added to 
the manuscript. 
 
3.1 Climatology  
Page 5, Line 9: Are you following the method cited or have you expanded it? Can you  
say why you have chosen this particular method to account for seasonality?  
We are following the method presented in Kremser et al. (2014) and expand the 
fit-coefficients in Fouriers to account for seasonality. Another method would be to fit the 
regression model completely independently for each month, i.e. first fit the model to only the 
January data, then fit the model to only the February data etc.. You will then end up with 12 
regression coefficients, one for each month, that capture the seasonal dependence of the 
data on the basis functions. The disadvantage of this approach is that the number of fit 
coefficients increases by a factor of 12. This significantly increases the uncertainty on the fit 
coefficients. Using Fourier expansions to account for seasonality reduces the number of 
fit-coefficients to 5 and therefore reduces the uncertainty.  
 
Figure 2:  
I think magenta and red are mixed up.  
Corrected. 



 
3.2.1 Training phase  
I find this section particularly hard to follow and think it would benefit from more precise 
equations. Equation 2 doesn’t help to explain what you actually did in terms of using time 
series from 5 RCMs.  
We acknowledge the reviewers concern that this section is hard to follow and have 
reordered the section and provided more background information about the process that is 
being undertaken. Specifically, we discuss how each RCM simulation is handled 
independently and have included an additional equation (Eq. 3) with the fit coefficient term 
expanded. 
 
How have you built a model to explain the relationship between variables of a different scale 
(daily and annual)? How robust is this relationship with only 5 RCMs? Can you explain the 
statistical models that you build and how they are validated to produce robust relationships 
that can be used with the simple climate model output?  
A majority of the uncertainty in the ensemble arises from the the range of T’global’s produced 
by MAGICC. The regression from the 5 RCMs agree relatively well for a given GHG 
emissions scenario. More information regarding the regression model used is provided in 
Bodeker and Kremser (2015) and Moore et al. (2003). This shortcoming has been 
addressed in the revised manuscript. 
 
Page 7, Line 6: The relationship itself is calculated over the period 1960-2100?  
No, during the training phase, the relationship is calculated using the RCM data sets which 
span the 1971-2100 period.  
 
Page 7, Line 7: ‘an annual mean global mean ..temp.. series’ – do these match the period of 
X’? Are there five series from the five models? 
Correct. This is discussed in the paragraphs that follow.  
 
Page 7, Line 7:  
\alpha(d) is the fit coefficient – are there 365 of these values?  
No there are not 365 alpha values. As explained in the manuscript, there are 5 fit coefficients 
values, α0 to α4 as given in Eq. 3. We have now provided an additional equation and text to 
clarify this.  
 
Page 7, Line 13: GCM ‘and’ RCM.  
Done. 
 
Page 7, Line 17: I don’t see how the Fourier pairs are embedded in equation 2 to find five fit 
coefficients from 365?  
An additional equation has been added to clarify the expansion into five fit coefficients.  
 
Page 7, Line 18: ‘recall, that this is applied at..’ – I don’t see where it told me that is is 
applied for each RCM simulation – are they not all used to find the relationship? How do you 
choose a specific RCM simulation? You should also remind the reader at the start of this 
section that this is done at a grid box level.  



This has been addressed in the revised manuscript by reordering of section 3.2.1. 
 
 
Figure 3: Could you zoom in to show what the red line looks like? It’s quite hard to see. 
Equation 2 must be more complicated than it looks to produce this line. 
The interannual variability arises from the Tglobal time series. The α values do not change 
from year to year, but simply scale the Tglobal values. A sentence has been added to this 
effect. 
 
Page 8, Line 5: ‘The unitless \alpha^‘– a is five values obtained from 365 (maybe more for 
the five RCMs) so I can’t picture what it really is or how it represents sensitivity to 
temperature. I’m sorry I’m quite lost with respect to alpha. Maybe more equations would 
help.  
For a given RCM, the regression model fit-coefficient   represents the relationship betweenα  
the variable of interest X’ and T’global: X’(t) = α x T’global(y) 
To capture the seasonal dependence of X’ and T’global, the fit-coefficient α is expanded in 
Fourier series (as described in Eq. 1). We have now include another equation into the 
revised manuscript to clarify this expansion and to clarify the resulting 5 fit-coefficients:  
 
X’(t) = (α0 + α1 x sin(2π d/365) + α2 x cos(2π d/365) + α3 x sin(4π d/365) + α4 x cos(4π 
d/365)) x T’global(y) + R(t) 
 
Page 9, Line 6: alpha depends on the RCM. How have you used the RCMs here? Have you 
chosen one – if so, why start with five? What happens to the data from the other 4? Have 
you found alpha with all five and then randomly selected from all of them to produce the MC 
sample? Perhaps reordering the writing here might clear things up with regards to  
how you are using the RCMs.  
The next sentences describe how the alpha value is chosen. We generate 5 alpha values, 
one for each RCM simulation available. Each ensemble member randomly chooses one of 
the 5 alpha values. 
 
3.3 Indirect response.  
Page 10, Line 26: What does series mean here? Please be more precise.  
We have removed “a series of daily maps of” as we agree that it confuses the explanation of 
EOF analysis. This paragraph has been reworded for clarity. 
 
Page 11, Line 4: I don’t understand this point. Can you reword it to be more precise. 
We have followed the suggestion by the review and reworded the sentence to: 
“That there will be patterns of variability (weather) whose amplitude and variability will 
respond to climate change as well as others which do not change with increases in T’global.” 
 
3.3.1 Identifying the modes.  
Page 11, Line 6: Are you referring to the residuals in Figure 3? Your language appears  
to have changed here and it sounds like you are doing something new. If these are the 
residuals please use the same language and link it better to the previous sections.  



Figure 3 shows the anomalies of the daily surface temperature. The residuals are what 
remains unexplained by the fit of Eq. 2. This sentence has been reworded to expressly 
mention where these residuals come from. 
 
Page 11, Line 7: ‘Where the patterns of variability obtained from EOF projections of  
VCSN’ 
This sentence has been corrected. 
 
Figure 5: Can you interpret these EOFs? Why is the period 1972-2013 used here? Also, this 
is not the RCM discussed in the introduction? Why have you changed the RCM?  
The first EOF means that the mode common mode of variability in New Zealand is that the 
entire country is warmer or colder than average on a given day. The corresponding principal 
component time series shows a strong correlation with Tglobal (not shown). EOF 2, 3 and 4 
represent different large scale weather patterns typically seen in New Zealand with the 
Southern Alps (Middle of the South Island) causing differences in East-West and 
North-South. For example, EOF2 shows that areas of the North Island and East coast of the 
South Island are often anomalously warm (or cold if the PC is negative) on the same day. 
 
Figure 5 presents an example of the EOF output for one particular RCM simulation which 
has been forced by the sea surface temperatures from the NorESM1-M mode. The same 
analysis has been performed for the 4 other RCM simulations using the boundary conditions 
from other AOGCMs as detailed in the manuscript (not shown). All examples use the 
simulation that was forced by prescribed RCP 8.5 NorESM1-M sea surface temperatures for 
consistency. 
 
The period 1972 to 2013 is used for the VCSN data only (because the observations are only 
available over that period), while for the RCM simulations output till 2100 can be used.  
 
Page 13, Line 12: Is it just New Zealand or is it likely to be more representative everywhere?  
This would hold everywhere, assuming a suitable observational dataset was obtained for the 
location of interest. 
 
Page 13, Line 14: Equations would be help clarity here. I’m still struggling to  
understand how you are correlating data on different scales.  
This is the same process as described in the training phase (Sec 3.2.1), but in this case the 
X’ is replaced with PC and α is replaced with β. 
 
PC_pseudo(t) = β x T’global(y) + R(t) 
 
Page 13, Line 23: How did you remove the autocorrelation?  
By transforming the α basis function using a first order autoregressive model as described in 
Bodeker and Kremser (2015) 
 
Page 13, Line 25: Why did you not remove autocorrelation at larger time lags? Can you talk 
about the implications? If it would matter that the interannual variability is too small why not 
calculate and remove it? If it’s not ‘too small’ then justify not doing it. 



We do not have a suitable proxy for modelling how this interannual variability changes with 
time and annual mean global mean surface temperature. 
 
Page 13, Line 28: How did you create pdfs from time series? Is the data from the whole time 
series in the pdf or are these time slices? What is the implication of having time series data 
in these pdfs? Have you got a sample of PCs to create the pdf?  
As mentioned in the caption for Figure 6, these PDFs are generated from time slices 
(2000-2010 and 2090-2100) for each PC time series. Choosing relatively short time slices 
ensures that any temporal trends in the data do not skew the PDFs. 
 
3.3.3 Modelling higher order modes.  
Page 15, Line 2: Can you better explain where \sigma comes from? Perhaps use an  
equation.  
This equation has been restructured and references the equation describing fourier pairs in 
an earlier section 
 
Page 15, Line 9: Why is n=50?  
The first 50 EOFs explain approximately 98% of the variability in the weather noise which 
was deemed sufficient to capture the patterns of variability. The explained variability in each 
subsequent EOF rapidly decreases. 
 
Figure 7: Can you show a close up of one of the blue lines perhaps – it’s difficult to see how 
the smaller scale temporal patterns are captured and discussed later.  
The blue line shows the median of 1900 daily temperature values with small but growing 
annual cycle over the period of interest. The importance of the blue line is to show the long 
term trend over the 21st century, rather than showing a close up of the annual cycle. A close 
up of the blue line does not add significant information to the paper 
 
Page 17, Line 5: I don’t understand the line starting ‘The apparent annual cycle..’. Could you 
elaborate? Is this what you’d expect and is it adequate?  
To clarify, the annual cycle seen in Figure 7, is not an annual cycle in the temperature 
anomalies (because the annual cycle has been removed as stated in the figure caption), but 
rather represents that the variability is changing over time. 
 
Yes, this is an expected result due to plotting daily data as percentiles for a long time span. 
 
Page 17, Line 9: Are there any implications to the interannual variability being smaller? Is 
improving this a future direction?  
The inter-annual variability limits the utility of analysing each ensemble member in isolation. 
We would like to address this limitation in future research. 
 
Page 17, Line 23: Can you say where 19000 comes from? Previously, you mentioned 1900 
simulations so I’m unsure what the extra simulations are taking into account.  
The Monte Carlo analysis and modelling of the weather noise are stochastic processes. 
Each model run produces a different set of ensemble members. Therefore, a large number 
of ensemble members can be generated drawing from the same statistical relationships 



established in the training phase. In this case, 10 ensemble members were generated for 
each Tglobal. Clarifying sentences have been added to the manuscript. 
 
Technical points: Abstract: Page 1, Line 11: change the direction of the first quote  
mark. This happens in other parts of the paper too. 
Corrected. 
 
Introduction: Page 2, Line 7: Do you mean ‘uncertain’?  
Removed the word. 
 
Page 4, Line 28: Make all of global subscript – use _{global}.  
Fixed. 
 
Anonymous Referee #2  
 
We would like to take this opportunity to also thank this reviewer for their thorough review of 
this paper. Their suggested changes have certainly improved the quality of the paper. 
 
Received and published: 9 May 2017  
 
Jared and colleagues present a method to compute distributions of local weather variables, 
and provide an example of how it can be applied to the case of New Zealand.  
For each geographic location, the method generates combinations of local climatology,  
long-term forced changes, and stochastic weather. By combining long-term temperature  
projections consistent with a large set of AOGCMs and carbon-cycle models, the  
paper claims to encapsulate model structural uncertainty in ensemble projections of  
future climate, and climate change.  
 
The method proposed by the paper is interesting. However, the paper neglects references  
to earlier literature that have proposed related approaches. Furthermore, the  
method as it is currently described shows some serious shortcomings, particularly in the 
assessment and inclusion of structural uncertainty in the Probability Density Functions  
(PDFs) suggested. Two issues stand out:  
 
1) Rather than encapsulating structural model uncertainty in a sensible and robust way,  
the current method basically multiplies and preserves model sampling bias. Just like the 
proposed method explores stochastic weather variations with an EOF analysis to understand 
dominant modes of variability, the same should be carried out for the 19  
AOGMs and carbon-cycle models. 
While what the review states is, in principle, possible, this is not the purpose of this analysis. 
Nobody has run all 190 combination of 19 different AOGCM and 10 different carbon cycle 
models to generate the fields that would be required to conduct such an EOF analysis. Few 
modelling groups would have the computing power or personnel to achieve that. In an ideal 
world this would be the optimal way to achieve an ensemble of projections that encapsulates 
structural model uncertainty in a sensible and robust way - the method we have published 
provides a practical means of achieving this in a world that is not ideal. It is clear from the 



description of our method that it does not solve every aspect of the model structural 
uncertainty problem, but we are not aware of any method that does.  
 
The implicit assumption that each AOGCM realization is statistically or structurally 
independent is not supported. 
Our method does not assume that each AOGCM realization is statistically or structurally 
independent - noting that we have no AOGCM realizations. It is therefore not immediately 
obvious to us what the reviewer’s criticism is. To be clear: our method relies on the existence 
of 19 different AOGCM tuning files for the MAGICC simple climate model and 10 different 
carbon cycle model tuning files for MAGICC. We acknowledge that neither set of tuning files 
spans the entire potential tuning space and we acknowledge that the set may not reflect the 
true distribution of the most probably tunings. We make no pretence that we achieve these 
goals and we are not aware of how would could achieve them; one would need to know, for 
example, what the exact PDF for climate sensitivity looks like. We have now added the 
paragraph. 
 
“The EPIC method does not attempt to faithfully represent the full, true PDF of potential 
tuning parameters both for the AOGCM tunings and the carbon cycle model tunings i.e. were 
MAGICC tuned to a different set of AOGCMs (e.g. the CMIP5 set rather than the CMIP3 
set), we would obtain a different set of tuning files which could lead to a somewhat different 
spread in our generated ensembles. The purpose of this paper is not to generate perfect 
ensembles that encapsulate structural model uncertainty in a completely accurate way but 
rather to describe a method that provides a better representation of that uncertainty than can 
be achieved with only a limited set of RCM simulations. The robustness of the EPIC method 
depends on the set of AOGCM and carbon cycle model tunings available and as more 
comprehensive sets (that better reflect the likelihood of some tunings over others) become 
available, we expect that the large ensembles generated by EPIC to better reflect the true 
underlying uncertainties.” 
 
This would benefit strongly from appreciating the findings from Masson & Knutti (2011) or 
Knutti et al (2013) to determine the structural independence of AOGCMs, and apply the 
methods of model weighting as described in Knutti et al (2017) in order to address structural 
model uncertainty in a meaningful way.  
We have cited and discussed the pertinent features of the papers cited by the reviewer. 
While we see the value in the weighting of projections in the generation of multi-model 
ensembles as described in Knutti et al (2017), we feel that this method does not apply. The 
annual mean global means obtained from MAGICC do not provide enough information to 
develop a robust model quality metric. Not all combinations of AOGCM and carbon cycle 
models are available in CMIP3, therefore, a model quality metric cannot be established from 
AOGCM output for every MAGICC T’global. 
 
2) The proposed method hinges on the assumption that fields of variable X are independent 
of the structural model uncertainty in AOGCMs. 
This is not true. The proposed method hinges on the assumption that the model structural 
uncertainty (both for AOGCM and carbon cycle model) is reflected in the 190 annual mean 
global mean surface temperature time series that we use as predictors to generate fields of 



X. Quite the opposite from what the review states is true, our reconstructions of fields of X 
are completely dependent on the structural uncertainties of the AOGCMs and carbon cycle 
models whose combinations of tunings were used to create the 190 member set of T’global. 
Our assumption is that the distribution better reflects that PDF of the resultant ensemble 
projections of X than would a limited set of output from RCM simulations. 
 
This assumption is not supported by any evidence. 
We agree that if we had made this assumption, that it would not be supported by the 
evidence.   
 
Not all patterns have to be equally probable to occur with a certain T_global response to a 
specific forcing path. 
We agree and have captured this by having the principal component time series correlate 
with T’global where such a correlation is found to be statistically robust. This allows for the 
probability of the patterns to change with changing T’global in a way that is consistent with 
RCM projections. 
 
What is required here is evidence based on a re-analysis of AOGCM data which shows that 
local patterns (or patterns of boundary conditions for the RCM) are either equally probably 
across high and low-response AOGCMs, or differ across these responses pointing towards 
the limitations of the proposed method.  
Our analysis does not use AOGCM data. It uses RCM data because we are focussing on an 
RCM domain. And we do indeed analyse the RCM data for their long term change in the 
probability of different patterns occurring. 
 
The claims about the applicability and usefulness of the method would be unsupported  
if both these points are not addressed in a significantly revised manuscript.  
We have now added material and clarification to address these points, where appropriate, in 
the paper. 
 
Smaller editorial comments:  
 
P4L28: T_global is formatted incorrectly 
Corrected. 
 
P5L2: Please edit this sentence for spelling and grammar. The authors need to provide  
evidence to make the claim that the methodology is valid for any chosen GHG  
emissions scenario.  
Corrected. 
 
P6Fig2: Color descriptions do not match the figure.  
Corrected. 
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Abstract. A method, based on climate pattern-scaling, has been developed to expand a small number of projections of fields

of a selected climate variable (X) into an ensemble that encapsulates a wide range of model structural uncertainties. The

method described in this paper is referred to as the Ensemble Projections Incorporating Climate model uncertainty (EPIC)

method. Each ensemble member is constructed by adding contributions from (1) a climatology derived from observations5

that represents the time invariant part of the signal, (2) a contribution from forced changes in X where those changes can be

statistically related to changes in global mean surface temperature (Tglobal), and (3) a contribution from unforced variability

that is generated by a stochastic weather generator. The patterns of unforced variability are also allowed to respond to changes

in Tglobal. The statistical relationships between changes in X (and its patterns of variability) with Tglobal are obtained in a

’‘training’ phase. Then, in an ’‘implementation’ phase, 190 simulations of Tglobal are generated using a simple climate model10

tuned to emulate 19 different Global Climate Models (GCMs) and 10 different carbon cycle models. Using the generated

Tglobal time series and the correlation between the forced changes in X
::
X and Tglobal, obtained in the ’‘training’ phase, the

forced change in the X field can be generated many times using Monte Carlo analysis. A stochastic weather generator model

is used to generate realistic representations of weather which include spatial coherence. Because GCMs and Regional Climate

Models (RCMs) are less likely to correctly represent unforced variability compared to observations, the stochastic weather15

generator takes as input measures of variability derived from observations, but also responds to forced changes in climate

in a way that is consistent with the RCM projections. This approach to generating a large ensemble of projections is many

orders of magnitude more computationally efficient than running multiple GCM or RCM simulations. Such a large ensemble

of projections permits a description of a Probability Density Function (PDF) of future climate states rather than a small number

of individual story lines within that PDF which may not be representative of the PDF as a whole; the EPIC method corrects20

for such potential sampling biases. The method is useful for providing projections of changes in climate to users wishing to

investigate the impacts and implications of climate change in a probabilistic way. A web-based tool, using the EPIC method

to provide probabilistic projections of changes in daily maximum and minimum temperatures for New Zealand, has been

developed and is described in this paper.
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1 Introduction

While future changes in climate will follow a single trajectory, it is highly unlikely that any single climate model projection

will
:::::::
correctly simulate that trajectory. The use of a single model projection is therefore insufficient for assessing the potential

future state of the climate. Rather, what is required is a large (e.g. 10,000 member) ensemble of projections that provides a

probabilistic portrayal of how the climate is expected to evolve. Clustering of trajectories within that probabilistic envelope then5

shows where any single trajectory has a higher likelihood of occurring. Probabilistic simulations of future climate, presented

as Probability Density Functions (PDFs), give decision-makers a much clearer picture of likelihoods of certain future climate

states compared to a single projection, or a small set of projections (Watterson et al., 2008). That said, if decision-makers

are presented with PDFs obtained from the same family of models, these may be biased by the assumptions and limitations

inherent in a single family of models that do not explore the possible trajectories seen in other model families. PDFs of future10

climate that consider all sources of uncertainty, including uncertainty resulting from structural differences in the underlying

models, provide the information needed for quantitative risk assessments, since the likelihood of any particular trajectory can

be estimated.

Exploring expected changes in extreme weather events also requires probabilistic simulations of future climate. While cli-

mate change may result in a small shift in the mean and/or standard deviation of a PDF of a selected climate variable, the tails15

of the distribution, which represent extreme weather events, can exhibit fractionally much larger changes (see Figure 1.8 in

Solomon et al. (2007)). It is especially important that extreme events, which by their nature are unusual, are captured in an

ensemble of projections.

Resolving changes in the frequency of regional-scale extreme weather events requires large ensembles of projections of high

spatial and temporal resolution. Generating such ensembles using models which simulate all important physical processes,20

such as Global Climate Models (GCMs) or Regional Climate Models (RCMs), is currently computationally prohibitive. The

ideas underlying climate pattern-scaling suggest a means of overcoming this hurdle and form the basis for the newly devel-

oped Ensemble Projections Incorporating Climate model uncertainty (EPIC) method described here. First, a robust statistical

relationship is derived between the
::::
local climate variable of interest (X) and some associated readily generated predictor. In

climate pattern-scaling, this predictor is typically the global mean surface temperature (Tglobal). If observations are being used25

to establish this relationship, then observed values of X and Tglobal would be used. If GCM or RCM output is used to establish

the relationship, then X and Tglobal should come from the same model simulation.

Once the relationship between X and Tglobal has been determined, then, given multiple versions of Tglobal, multiple time

series of X can be generated based on that relationship. This methodology assumes that many versions of Tglobal can be

simulated in such a way as to capture the inherent variability resulting from structural uncertainties in GCMs and carbon cycle30

models in a computationally efficient way, e.g., through the use of a simple climate model (SCM). If the large ensemble of

Tglobal time series spans the range of model structural uncertainties, then the resultant ensemble of generated X time series

will reflect that spread in uncertainties, e.g., as done in Reisinger et al. (2010).
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:
A
:::::::

number
:::
of

:::::::
previous

::::::
studies

::::
(e.g.

::::::::::::::::::
Murphy et al. (2007),

::::::::::::::::
Sexton (2012) and

:::::::::::::::::
Harris et al. (2010))

::::
used

::
a

::::::
method

::::
that

::::
was

:::::::
designed

:::
by

:::
the

:::
UK

::::
Met

::::::
Office

::::::::::::::::::::
(Murphy et al., 2009) to

::::::
provide

:::::::::::
probabilistic

:::::::::
projections

:::
of

:::::
future

:::::::
climate

:::
for

:::::::
Europe.

::::
This

::::::
method

::::::::
combines

::::::::::
information

:::::
from

:
a
::::::::
perturbed

:::::::
physics

::::::::
ensemble

::::::
(PPE),

::::::::::
multi-model

:::::::::
ensembles

:::
to

::::::
capture

::::::::
structural

::::::
model

:::::::::::
uncertainties,

:::
and

:::::::::::
observations.

:::::
Since

::::::
GCMs

::::
have

:::::
been

:::::
shown

::
to
::::

not
::
be

::::::::::
structurally

::::::::::
independant

:::::::::::::::::::::::
(Masson and Knutti (2011),

::::::::::::::::
Knutti et al. (2013)),

:::::::::::
multi-model

::::::::
ensembles

::::::
benefit

:::::
from

:::::
model

::::::::
weighting

::
to

:::::::
improve

:::
the

::::::::
ensemble

::::::::::
performance

:::::::::::::::::
(Knutti et al., 2017).

:::
The

:::::::::
limitations

:::
of

:::::
these

:::::::
methods

:::
are

::::
that

:::::
large

::::::::
computer

::::::::
resources

:::
are

::::::::
required

::
to

:::
run

::::
the

::::
large

:::::::::
ensembles

:::
of

::::::::::
simulations5

:::::::
required

:::::
which

::::
limit

:::
the

::::::
ability

::
to

:::::
apply

:::
this

:::::::
method

:::::
across

::
a

::::
large

:::::::
number

::
of

:::::::
different

::::::::::
greenhouse

:::
gas

::::::::
emissions

:::::::::
scenarios.

2 Models and Data Sources

2.1 Regional Climate Model

An RCM simulation, or a number of RCM simulations, are used to provide the time series used to train EPIC i.e. to quanti-

tatively establish the relationship between the change in annual mean global mean surface temperature and the change in the10

climate variable of interest and its variability. The RCM simulations used in this study were performed using the Hadley Centre

regional climate model HadRM3-PRECIS (Jones et al. , 2004) that has been modified to be used for New Zealand (Bhaskaran

et al., 1999, 2002; Drost et al., 2007). The RCM domain spans 32◦S to 52◦S and 160◦E to 193◦E (167◦W) on a regular rotated

grid with a horizontal resolution of 0.27◦ and with the North Pole at 48◦N and 176◦E. Such a rotated grid, with the equator

running through the New Zealand domain, ensures a quasi-uniform grid box spacing. The 0.27◦ resolution results in a domain15

of 75×75 grid points reduces computation time for long simulations, and has been shown to be adequte in previous studies

(Drost et al., 2007). The spatial resolution necessitates a computational time step of 3 minutes. The model orography and

vegetation data sets were updated from those used by Drost et al. (2007) to the high resolution surface orography data set used

in NIWA’s operational forecast model (Ackerley et al., 2012); differences in the vegetation fields are small. The first year of

model simulation (the spin-up) is excluded from the analysis as this is used to achieve quasi-equilibrium conditions of the land20

surface and the overlying atmosphere.

The RCM lateral boundary conditions can be sourced either from meteorological reanalyses (these are typically used for

hindcast simulations) or from Atmosphere-Ocean Global Climate Model (AOGCM) output. The AOGCM used in this study

was HadAM3p developed by the Hadley Centre in the UK and forced by Coupled Model Intercomparison Project Phase 3

(CMIP3) sea surface temperatures at the air-sea interface for past and future climate simulations. HadAM3p is a slightly25

improved version of the atmospheric component of HadCM3 with 19 vertical levels and a horizontal resolution of 1.875◦

longitude by 1.25◦ latitude. HadAM3/HadAM3p simulate all atmospheric and land surface processes relevant to climate (Pope

et al., 2000). Processes related to clouds, radiation, the boundary layer, diffusion, gravity wave drag, advection, precipitation

and the sulfur cycle are all parameterized in HadAM3p. Additional details regarding HadAM3p are available in Gordon et al.

(2000), Pope and Stratton (2002), Pope et al. (2000), and Gregory et al. (1994).

Most GCM and RCM simulations display biases when compared to observations. The RCM simulations used in this study

were partially bias-corrected by bias-correcting the sea surface temperatures that are used as lower boundary conditions for the
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HadAM3p simulations, which then provided the lateral boundary conditions for the RCM simulations (personal communication

A. Sood, 2016).5

2.2 Simple Climate Model

In this study, MAGICC (Model for Assessment of Greenhouse-gas Induced Climate Change; Meinshausen et al. (2011); Mein-

shausen et al. (2011)) is the simple climate model (SCM) used to generate an ensemble of Tglobal time series. MAGICC is a

reduced complexity climate model with an upwelling diffusive ocean and is coupled to a simple carbon cycle model that in-

cludes carbon dioxide (CO2) fertilization and temperature feedback parameterisations of the terrestrial biosphere and oceanic10

uptake. MAGICC can be tuned to emulate the behaviour of 19 different AOGCMs (Meehl et al., 2007) and 10 carbon cycle

models (Friedlingstein et al., 2006). The resultant 190 different ’
:
‘tunings’ for MAGICC can be used to generate 190 equally

probable Tglobal time series that provide some representation of the spread in Tglobal resulting from structural uncertainties

in AOGCMs and the carbon cycle models used in C4MIP (Coupled Carbon Cycle Climate Model Intercomparison Project).

When used as predictors for changes in local climate variables, and using the prior established quantitative relationship be-15

tween Tglobal and the local climate variable
::
X , these 190 Tglobal time series can be used to generate 190 equally probable time

series of the local climate variable
::::::::
emulating

:::
X .

:

:::
The

:::::
EPIC

:::::::
method

::::
does

:::
not

:::::::
attempt

::
to
:::::::::

faithfully
::::::::
represent

:::
the

::::
full,

::::
true

::::
PDF

::
of

::::::::
potential

::::::
tuning

:::::::::
parameters

:::::
both

:::
for

:::
the

:::::::
AOGCM

:::::::
tunings

:::
and

:::
the

::::::
carbon

:::::
cycle

:::::
model

:::::::
tunings

::
i.e.

:::::
were

::::::::
MAGICC

:::::
tuned

::
to

::
a

:::::::
different

:::
set

::
of

::::::::
AOGCMs

::::
(e.g.

:::
the

:::::::
CMIP5

::
set

::::::
rather

::::
than

:::
the

:::::::
CMIP3

::::
set),

:::
we

::::::
would

::::::
obtain

:
a
::::::::

different
:::
set

::
of

::::::
tuning

::::
files

::::::
which

:::::
could

::::
lead

:::
to

:
a
:::::::::

somewhat
::::::::
different20

:::::
spread

::
in

::::
our

::::::::
generated

:::::::::
ensembles.

::::
The

:::::::
purpose

::
of

::::
this

:::::
paper

::
is

:::
not

::
to

:::::::
generate

::::::
perfect

:::::::::
ensembles

::::
that

::::::::::
encapsulate

::::::::
structural

:::::
model

::::::::::
uncertainty

::
in

:
a
::::::::::
completely

:::::::
accurate

::::
way

:::
but

:::::
rather

:::
to

:::::::
describe

:
a
:::::::

method
::::
that

:::::::
provides

::
a

:::::
better

::::::::::::
representation

::
of

::::
that

:::::::::
uncertainty

::::
than

:::
can

:::
be

:::::::
achieved

::::
with

::::
only

::
a
::::::
limited

:::
set

::
of

:::::
RCM

::::::::::
simulations.

::::
The

:::::::::
robustness

::
of

:::
the

:::::
EPIC

::::::
method

:::::::
depends

:::
on

::
the

:::
set

::
of

::::::::
AOGCM

:::
and

::::::
carbon

:::::
cycle

::::::
model

::::::
tunings

::::::::
available

:::
and

::
as

:::::
more

::::::::::::
comprehensive

::::
sets

::::
(that

:::::
better

:::::
reflect

:::
the

:::::::::
likelihood

::
of

::::
some

:::::::
tunings

::::
over

::::::
others)

:::::::
become

::::::::
available,

:::
we

:::::
expect

::::
that

:::
the

::::
large

:::::::::
ensembles

::::::::
generated

:::
by

:::::
EPIC

::
to

:::::
better

:::::
reflect

:::
the

::::
true25

:::::::::
underlying

::::::::::
uncertainties.

2.3 Virtual Climate Station Network

While the RCM simulations have been partially bias corrected, we recognise that some biases may remain. Therefore, we build

our projections off an observational data set, so that, in the absence of any forced changes in climate, the projections default

to observations (this is described in greater detail below). Observationally-based time series are obtained from the so-called30

Virtual Climate Station Network (VCSN). The VCSN data set for the New Zealand land surface is constructed on a regular

0.05◦×0.05◦ grid from spatially inhomogeneous and temporally discontinuous quality controlled weather station data (Tait et

al., 2005). The values estimated on the 0.05◦×0.05◦ grid are based on thin plate smoothing spline interpolation using a spatial

interpolation model as described in Tait, (2008).
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3 Methodology

For a given geographic location, each ensemble member, covering the period 1960 to 2100, is constructed from contributions5

including:

1. a climatology derived from observations that represents the time invariant part of the signal,

2. a contribution from long-term forced changes in the magnitude of the variable of interest where those changes scale with

changes in anomalies in global mean surface temperature (T′global), and

3. a contribution from weather generated by a stochastic weather generator that incorporates both forced and unforced10

variability.

The construction of each of these signals is described in greater detail below with a high level overview of how these contri-

butions are related shown in Figure 1. The methodology described below pertains to a selected single greenhouse gas (GHG)

emissions scenario and the daily maps of the climate variable of interest (X; here daily maximum (Tmax) and daily mini-

mum (Tmin) surface temperatures) are obtained from one or more RCM simulations. The results presented in this study were15

obtained from a 1900 member ensemble (10 Monte Carlo resampled alpha values were choosen for each of the 190 Tglobal

time series from MAGICC
:::::::
ensemble

::::::::
members

:::::
were

::::::::
generated

:::
for

:::::
each

::::::
Tglobal), that was generated over the period 1960 to

2100.
::::
Each

:
The Tmax and Tmin fields were obtained from five RCM simulations driven by the Representative Concentration

Pathway (RCP) 8.5 GHG emissions scenario
::
for

::::
the

:::::
period

::::::::::
1971-2100. RCP 8.5 was choosen to be presented due to the

::
as

:
it
:::::::
displays

::
a high climate signal to noise ratiowhich results in more ,

::::::::
resulting

::
in

:::
the

:::::
most robust regression results, but the

methodology is valid any choosen GHG emission scenarios
::::::::
assuming

::
a

:::::
robust

:::::::::
regression

::
fit

::
is
::::::::
obtained

::::::
during

:::
the

:::::::
training

:::::
phase. All anomalies were calculated with respect to the period 2000 to 2010.

::::
This

:::::::
anomaly

::::::
period

:::
was

::::::::
choosen

::
as

:::
the

::::::
change5

::
in

::
X
::::

over
:::
the

:::::::
century

::::
was

::
of

:::::::
interest.
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Figure 1. Flow chart illustrating the processes involved in generating a single EPIC ensemble member from a selected RCM simulation.
Numbers in brackets refer to the section where more details are provided.

3.1 The climatology

At each 0.05◦ by 0.05◦ (approximately 5km) grid point, a mean annual cycle is calculated from daily observational data from

2001 to 2010. For this study, these observational data were obtained from VCSN (Section 2.3). Since the 10 year baseline

period is rather short, a climatology derived by calculating calendar day means would still contain some weather-induced

noise. Therefore, a regression model which includes an offset basis functionexpanded using the first
:
,
::::::::
expanded

:::::
using

:
two

Fourier series expansions (see Section 3.2.1 and Section
::::::
Fourier

:::::
pairs)

::
to

::::::
account

:::
for

::::::::::
seasonality

::::
(see

::::::
Section

:
2.4 of Kremser

et al. (2014))
:
, is fitted to the daily observational data to obtain the mean annual cycle.

:::
The

::::
first

:
2
::::::
Fourier

:::::
series

::::::::::
expansions

:::
are5

::::
given

::
in
::::
Eq.

::
1.

β(d) = β0 +β1 × sin(2πd/365)+β2 × cos(2πd/365)+β3 × sin(4πd/365)+β4 × cos(4πd/365)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(1)

6



:::::
where

:
d
::

is
:::
the

::::
day

::::::
number

:::
of

:::
the

::::
year

:::
and

::
β

::
is

:
a
:::
the

:::::::::
regression

:::::::::
coefficient

:::::
being

:::::::::
expanded. By using an offset basis function

expanded in Fourier series
::::
pairs, the resultant mean annual cycle is smooth. Examples of the mean annual cycle are shown in

Figure 2 for four selected locations around New Zealand.
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Figure 2. Observations of daily maximum surface temperature (magenta
:::
red) and daily minimum surface temperature (cyan) from VCSN

together with the mean annual cycle obtained from the regression model fit to the daily maximum surface temperature (red
::::::
magenta) and the

daily minimum surface temperature (blue) time series for four selected locations in New Zealand, over the period 2001 to 2010.

This repeating mean annual cycle then provides the stationary baseline for the entire period of interest e.g. 1960 to 2100.

3.2 Direct response to T′
global

3.2.1 Training Phase

To determine
::
In

:::
the

::::::
training

::::::
phase, the first-order long-term change in the magnitude of X , a

:::::
forced

::::::
change

::
in

:::
X

:
is
::::::::::
established5

::::
using

:::
the

:::::::::
correlation

:::::::
between

:::
X ′

::::
and

::::::
T′global.::::

This
::::::::::
relationship

::
is

:::::::
expected

::
to

::
be

:::::::::
dependent

::
on

:::
the

:::::
RCM

:::::::::
simulation

::::
from

::::::
which

::
the

:::::::
variable

:::
of

::::::
interest

::
is

::::::::
obtained.

:::::
There

:::
are

:::
two

:::::
ways

::
in

:::::
which

::::
this

:::
can

::
be

:::::::::
managed,

::::
viz.:

7



1.
:
A
::::::::
statistical

::::::::::
relationship

::
is
:::::::::
quantified

:::
for

::::
each

:::::
RCM

:::::::::
simulations

:::::::::
providing

::::
data

::
for

:::
the

:::::::
training

:::::
phase

::
of

::::::
EPIC.

:::::
Then,

::
in

::
the

::::::::::::::
‘implementation

::::::
phase’

::
of

:::::
EPIC

::::
(see

::::::
below),

:::
for

::::
each

::::::::
ensemble

::::::::
member,

:
a
::::::
single

::::::::::
relationship

::
is

::::::::
randomly

:::::::
selected

::
to

::
be

:::::::
applied.10

2.
:
A
::::::

single
:::::::::
statistical

::::::::::
relationship

::
is

:::::::::
quantified

:::::
using

::
a
:::::::::::
concatenated

:::::
time

:::::
series

::::::::
obtained

::::
from

:::
all

::::::
RCM

::::::::::
simulations

::::::::
providing

::::
data

::
for

:::
the

:::::::
training

:::::
phase

::
of

::::::
EPIC.

::
In

:::
the

:::::::::::::
‘implementation

:::::::
phase’,

:::
this

::::::::::
relationship

::
is

:::::
used.

:::
For

:::
the

:::::::
purposes

::
of

:::
this

:::::
study,

:::::::
method

:::
(1)

:
is
::::
used

::
as

:::::::
method

::
(2)

::::
will

::::
tend

::
to

:::::::::::
underestimate

:::
the

::::
true

:::::::::
uncertainty

::
of

:::
the

::::::::::
relationship

:::::::
between

:::
X ′

:::
and

::::::
T′global.:

:
A
:

simple linear correlation between X ′ and T′global is calculated for each of the 5 RCM simulations
:::
and

::::
each

::::
grid

:::::
point15

:::::::::::
independently, viz.:

X ′(d,yt) = α(d)×T ′global(y)+R(t)
:::::

(2)

where X ′(d,y)
:::::
X ′(t)

:
are the daily anomalies with respect to the 2001-2010 mean annual cycle of X(see Section 3.1),

T ′global(y) are the anomalies of an annual mean global mean surface temperature time series, and α(d)
:
α
:
is the fit coeffi-

cient . X ′, rather than X , is used in equation 2 as the change in the seasonal cycle is of interest. The residuals from this fit20

are then
:::
and

::
R

::
is

:::
the

::::::
residual

::::::
which

::
is

:::
the

:::
part

:::
of

:::
the

:::::
signal

:::
that

::::::
cannot

:::
be

::::::::
explained

:::
by

:::
the

::::::::
statistical

::::::
model.

::
In

:::
this

:::::
case,

:::
the

:::::::
residuals

:::
are

:
used by the stochastic weather generator (see Section 3.3) to model higher order changes in the variability in X

which are not captured by Eq. (2).

Because GCM or
:::
The

:::::
mean

::::::
annual

:::::
cycle

::
of

:::
X ,

:::::
which

::
is

::::
used

::
to

::::::::
calculate

:::
X ′,

::
is

::::::::
generated

:::::
using

:::
the

:::::
same

::::::
method

::::
and

::::
time

:::::
period

::::
used

:::
to

:::::::
calculate

:::
the

:::::
mean

::::::
annual

:::::
cycle

::
of

:::
the

::::::::::::
observational

:::
set.

:::
X ′,

::::::
rather

::::
than

:::
X ,

::
is

::::
used

::
in

:::
Eq.

::
2
::
as

:::
the

:::::::
change

::
in25

::
the

::::::::
seasonal

:::::
cycle

::
is

::
of

:::::::
interest.

:::::::::
Removing

:::
the

:::::
mean

::::::
annual

:::::
cycle

:::::::
removed

:::
the

:::::
need

::
to

:::
add

:::::::::
additional

:::::
terms

::
to

::::::::
describe

:::
the

:::::::
baseline

:::::::
seasonal

:::::
cycle.

:

:::::::
Because

:::::
GCM

:::
and

:
RCM output provide a much longer time series than observations and extend into a period of greater

changes in X , GCM or RCM output are preferentially used in this training phase. When using projections from RCMs as input

to the training phase of EPIC, T′global is sourced from the GCM that provided the boundary conditions for the RCM simulation.

Because
::
the

:::
fit

:::::::::
coefficient, α

:
, is expected to depend on season, it is expanded in two Fourier pairs to account for its seasonality

i. e.

α(d) = α0 +α1 × sin(2πd/365)+α2 × cos(2πd/365)+α3 × sin(4πd/365)+α4 × cos(4πd/365)5

where d is the day number of the year
::::
(Eq.

:::
1).

:::
The

::::::::
resulting

::
α

:::
has

::
a
::::::
smooth

::::::::
seasonal

:::::
cycle

:::::
which

::::::
would

:::
not

:::
be

:::
the

::::
case

::
if

::::
each

:::::
month

::::
was

:::::
fitted

::::::::::::
independently. When embedded in Eq. (2), this expansion results in

::
the

::::::::
resulting

:::
Eq.

::::
(3),

:::
has five fit

8



coefficients for α
:::
(α0 ::

to
::::
α4).

X ′(t) = (α0 +α1 × sin(2πd/365)+α2 × cos(2πd/365)+α3 × sin(4πd/365)+α4 × cos(4πd/365))×T ′global(y)+R(t)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(3)

:::
The

::::::::
statistical

::::::
model

:
is
::::::
solved

:::::
using

:
a
::::::::::
multivariate

::::
least

:::::::
squares

::::::::
regression

::::::::
approach

:::::::::::::::::::::::::
(Moore and McCabe , 2003) to

::::::
obtain

:::
the

::
fit

:::::::::
coefficients. We refer to each such set of five fit coefficients as a tuple; recall that this fit is applied at each grid point and for

each available RCM simulation.

An example of a fit of Eq. (2
:
3) to daily maximum surface temperature anomalies is shown in Figure 3 for a location in the

South Island of New Zealand.5
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Figure 3. An example of the fit of Eq. (2
:
3) (red line) to daily maximum surface temperature anomalies (blue) obtained from the NorESM1-M

RCM simulation under the RCP8.5 GHG emissions scenario at Alexandra, New Zealand (45.249◦S, 169.396◦E). Solid line represents the
zero line (no change).

The small annual cycle in the fit, with growing amplitude, results from summer-time and winter-time daily maximum surface

temperatures exhibiting different correlations against T′global. :::
The

:::::::::::
inter-annual

:::::::
variation

::::::
arises

::::
from

:::::::
changes

::
in

::::::
Tglobal:::

as
::
α

9



::::
does

:::
not

::::::
change

::::
year

::
to

::::
year.

:
In addition to the long-term forced change, there is significant day-to-day variability. The use of

the residuals from such fits in the stochastic weather generator model is described in Section 3.3.

The unitless α coefficient
:::::::
describes

::
a
:::::::
locations

:::::::::
sensitivity

::
to

:::::::
changes

::
in

::::::
annual

:::::
mean

:::::
global

:::::
mean

:::::::
surface

::::::::::
temperature.

::::
The10

::::::::
magnitude

:::
of

::
α

:
indicates whether Tmax or Tmin are changing faster (α>1) or slower (α<1) than the global mean surface

temperature. Example maps of the magnitude of the α coefficient for four selected days in New Zealand are shown in Figure

4. Maps of α coefficients (unitless) which represent the sensitivity of changes in annual mean global mean maximum surface

temperature for locations throughout New Zealand. The α coefficients were derived from fits of Eq. (2) to daily time series of

daily maximum temperatures at each grid point of the NorESM1-M RCM simulation. The annual mean global mean surface

temperature anomalies were taken from the AOGCM simulation that provided the boundary conditions for this particular RCM

simulation. Black line indicates α values of 1.0. This analysis shows that daily maximum surface temperatures over most of5

New Zealand are warming slower than Tglobal. However, high altitude regions, such as the Southern Alps, indicate Tmax

increasing faster than Tglobal ::
for

:::::::
southern

:::::::::::
hemispheric

::::::
spring,

:::::::
summer

:::
and

::::::
autumn.

10



Figure 4.
::::
Maps

::
of

::
α
:::::::::
coefficients

:::::::
(unitless)

::::::
which

:::::::
represent

:::
the

::::::::
sensitivity

::
of

:::::::
changes

::
in

:::::
annual

:::::
mean

:::::
global

:::::
mean

::::::::
maximum

::::::
surface

:::::::::
temperature

::
for

:::::::
locations

::::::::
throughout

::::
New

:::::::
Zealand.

:::
The

:
α
:::::::::
coefficients

::::
were

::::::
derived

::::
from

::
fits

::
of

:::
Eq.

::
(3)

::
to

::::
daily

::::
time

::::
series

::
of

::::
daily

::::::::
maximum

:::::::::
temperatures

::
at
::::
each

::::
grid

::::
point

::
of

:::
the

::::::::::
NorESM1-M

::::
RCM

:::::::::
simulation.

:::
The

::::::
annual

::::
mean

:::::
global

:::::
mean

::::::
surface

:::::::::
temperature

::::::::
anomalies

::::
were

::::
taken

::::
from

::
the

::::::::
AOGCM

::::::::
simulation

:::
that

:::::::
provided

::
the

::::::::
boundary

:::::::
conditions

:::
for

:::
this

:::::::
particular

:::::
RCM

::::::::
simulation.

:::::
Black

:::
line

:::::::
indicates

::
α

:::::
values

:
of
::::

1.0.

There is, of course, some uncertainty in α. To account for that uncertainty, a large set of α tuples is derived through a Monte

Carlo bootstrapping approach (Efron and Tibshirani , 1994), whereby residuals from the Eq. (2
:
3) fit are randomly sampled

and added to the regression model fit to generate multiple statistically equivalent time series which are then refitted to obtain

equally probable α fit coefficients (Bodeker and Kremser, 2015). This approach allows for the incorporation of the uncertainty

in the fit of Eq. (2
:
3) into the final ensemble of projections.5

It is also expected that α will depend on the RCM simulation used for the training. There are two ways in which this can be

managed, viz.:

11



1. Tuples of α values are obtained for each RCM simulation providing data for the training phase of EPIC. Then, in the

‘implementation phase’ of EPIC (see below), for each ensemble member, a tuple of α values is selected from the Monte

Carlo-derived set of α tuples from a RCM data set that is randomly selected.10

2. Tuples of α values are obtained simultaneously for all RCMs by fitting Eq. (2) to concatenated time series of X ′ and

T′global(y) obtained from all RCM simulations providing data for the training phase of EPIC.

For the purposes of this study, method (1) is used as method (2) will tend to underestimate the true uncertainty seen in the

values of α.

3.2.2 Implementation Phase15

Once the Monte Carlo derived sets (just one set if method (2) is used) of α tuples have been obtained, they are used in the

implementation phase of EPIC. As described in Section 2.2, 190 simulations of T′global can be generated using a SCM. A

randomly selected T′global time series from the 190 member set is used together with a randomly selected tuple of α values to

generate a series of maps of X ′forced using Eq. (2
:
3), where the forced subscript denotes these are changes which correlate with

T′global20

There might be some concern that the random selection of an α tuple from the available set of tuples for a location could

cause the spatial coherence in the forced signal across New Zealand to be lost, as at a nearby location a different tuple could be

randomly selected. This was tested for and was found not to be the case as the multiple instances of tuples (multiple instances

of Figure 4) are very similar and consistent (not shown here).

3.3 Indirect response to T′
global and weather noise25

In addition to the change in X that correlates directly with T′global, higher order components of variability, as well as realistic

weather noise, must be present in the projections comprising the ensemble. One potential use of the ensemble of projections

generated by EPIC is assessment of the impacts and implications of climate change on a regional scale. These impacts seldom

happen at a single site, i.e. the impact is felt over a large area. For this reason it is important that any specific member of an en-

semble is appropriately spatially coherent over multiple sites. This is not achieved if the method considers each site in isolation30

since any purely stochastically determined weather noise added to a site would not be spatially coherent at neighbouring sites.

For this reason, an empirical orthogonal function (EOF) approach, described by Lorenz (1956), is used to reveal the
:::::::
describe

::
the

::::::
spatial

:::::::
weather

:::::::
patterns

::::
and

::::
how

::::
they

:::::::
change

::::
over

:::::
time.

::::
EOF

:::::::
analysis

::
is
::
a
::::::::
statistical

:::::::
method

:::::
which

:::::::
reveals

:::
the

::::::
spatial

:::::::
patterns,

::
or

:
modes of variability inherent in a series of daily maps of X ′ after dependence on T′global has been removed, and

their
::
in

:
a
::::
data

:::
set,

::::
and

::::
how

::::
these

:::::::
patterns

::::
over

::::
time

:::
as

::::
given

:::
by

:::
the

::::::::
resulting principal component (PC) time series. Hereafter

we refer to these modes of variability as ’
:
‘weather modes’.

:::
The

::::
EOF

:::::::
analysis

::
is

::::::
applied

::
to

:::
X ′

::::
after

:::
the

::::::::::
dependence

:::
on

::::::
T′global

:::
has

::::
been

::::::::
removed.

:
These weather modes, and stochastically generated PC time series(PCsyn), are then used to construct5

a stochastic weather generator which generates
:::::::
produces

:
realistic weather noise

::
by

:::::::::::
stochastically

:::::::::
generating

:::
PC

:::::
time

:::::
series

:::::::
(PCsyn). The following is recognised in the construction of the stochastic weather generator model:

12



1. That VCSN data will provide the most realistic representation of weather noise.

2. That RCM simulations will simulate how that weather noise is likely to evolve in response to climate change (represented

by T′global).10

3. That the RCM simulations will be imperfect in simulating the patterns of variability derived from the VCSN data.

4. That there will be weather modes
::::::
patterns

::
of

:::::::::
variability

::::::::
(weather) whose amplitude and variability will respond to climate

change as well as others which will not
::
do

:::
not

::::::
change

::::
with

::::::::
increases

::
in

::::::
T′global.

3.3.1 Identifying the modes of variability responding to climate change

We begin by conducting an EOF analysis on VCSN data that have been detrended by removing the first order trend and

on residuals from the training phase in Section 3.2.1
::
fit

::
of

::::
Eq.

::
3

::
to

:::::
RCM

::::
data

::
in

:::
the

:::::::
training

::::::
phase. Where the patterns of

variability obtained from
::::
from

:::::
EOF

:::::::::
projections

::
of

:
VCSN and RCM diverge is considered to be the cut-off point for where the

RCM simulation can be taken to have any integrity with regard to simulating forced changes in weather noise. Visual inspection5

of the EOF maps derived from VCSN and RCM data suggested that the first four modes of variability were well represented

by the RCM simulations (see Figure 5).
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Figure 5. The first five EOF patterns of weather noise in daily maximum surface temperatures obtained from VCSN data from 1972 to 2013
(left column) and obtained from RCP8.5 NorESM1-M RCM output from 1972 to 2100. The colour bar shows the amplitude of the pattern in
◦C. The percentage values in each panel show the fraction of the total variability explained by each mode.
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It is clear from Figure 5 that the RCM EOFs exhibit the same modes of weather variability as seen in the VCSN data up

until EOF pattern 4. These first four patterns of variability together explain 83.3% of the total weather variability in the VCSN

data and 64.7% of the variability in the RCM data. It is these four modes of weather variability that evolve with T′global in our10

stochastic weather generator.

3.3.2 Modelling forced changes in the amplitude and variability of weather modes

To compare statistics from the PC time series calculated from VCSN and RCM data, they must share the same underlying

weather modes. This is done by projecting the VCSN weather modes (EOFV CSN ) onto the RCM data to calculate a pseudo-

PC time series. A pseudo-PC time series is calculated in the same way that a standard PC time series is calculated, except that15

the weather modes are prescribed instead of being calculated from the data. A pseudo-PC time series describes the magnitude

of a particular pattern of variability from VCSN, which is present in the RCM data. The VCSN weather modes, rather than the

RCM weather modes, were prescribed because the observational data set is more likely representative of patterns of variability

seen in New Zealand. The pseudo-PC and VCSNPC time series can be compared as they both describe the same patterns of

variability.20

In the stochastic weather generator, we consider changes in:

1. The amplitude of the weather mode: this is quantified by correlating the associated pseudo-PC time series with T′global
and then using that correlation coefficient (β) to drive a trend in the PC time series obtained from the VCSN-based EOF

analysis.

2. The variability of the weather mode: this is quantified by correlating the variability in the associated pseudo-PC time25

series with T′global and then using that correlation coefficient (βvar) to drive a trend in the variability of the PC time series

obtained from the VCSN-based EOF analysis. The mean variability of the weather mode is obtained from the VCSN PC

time series rather than the pseudo-PC time series, so that the weather mode emulates the magnitude of variability seen

in the VCSN data.

We also recognize that the PC time series will exhibit temporal auto-correlation and therefore, that correlation is quantified

and removed before correlating the PC signal, and its variability, against T′global. The resulting time series (PCsyn_n) captures

both long-term shifts and/or changes in spread of the nth weather mode. We note, however, that by considering only lag-one

autocorrelation in these PC time series, we neglect longer term auto-correlation, e.g. that resulting from El Niño and La Niña

events. As a result, our ensemble time series exhibit smaller interannual
::::::::::
inter-annual variability than is observed in VCSN time5

series.

The ability of the method to generate a set of PDFs of the PCsyn_1 to PCsyn_4 time series is demonstrated in Figure 6.
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Figure 6. PDFs of the first four synthetic (PCsyn) and RCM (PCRCM ) PC time series for the first decade of the 21st century are shown
in solid lines and PDFs for the last decade of the 21st century are shown in dashed lines. PCRCM and PCsyn were both derived from the
NorESM1-M RCM output as an example. The PDF from the PC time series (2000-2010) obtained from VCSN is also shown (PCV CSN ). The
disagreement between the PCRCM and PCV CSN validates the use of VCSN weather noise as the basis for our stochastic weather generator
model and the good agreement between the ensemble of PCsyn and PCV CSN demonstrates that the EPIC method generates synthetic PC
time series with a degree of variability that matches reality.

The EPIC method corrects for any shortcomings in the ability of the RCM to correctly simulate expected magnitudes of

weather variability for these four primary modes and then accommodates these corrections when generating PC time series

that evolve into the future.

3.3.3 Modelling higher order modes of variability in weather

The stochastic weather generator model includes the effects of EOF patterns five and higher but assumes that these modes

show no dependence on T′global as the RCM simulations do not accurately simulate these higher modes of weather variability.5

The variability of the PC time series often has a strong seasonal cycle. Therefore, for EOF pattern five and higher, synthetic

PC time series (PCsyn) are generated using a standard Monte Carlo approach, i.e. randomly selecting values from N(0,σ(d)),
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that is, a normal distribution with a mean of 0 and a standard deviation which depends on the day of the year which is being

modelled. σ(d) is determined by a zeroth-order fit expanded in
:::::
linear

::
fit

::
of

:
two Fourier pairs

:::
(Eq.

::
1)

:
to the VCSN PC time

series.
:::
The

::::::
Fourier

::::
pairs

::::::
model

:::
the

:::::::
seasonal

:::::
cycle

::
in

:::
the

:::
PC

::::
time

::::::
series. This approach allows selection of extreme PC values10

that are outside of the range of PC values experienced in the 1972-2013 period, but noting that the PDFs of these PCs do not

evolve with time. As with the forced changes in the amplitude and variability of weather modes, the auto-correlation in the PC

time series is also quantified and captured in the statistically modelled PC time series.

For a given ensemble member, once synthetic PC time series at daily resolution have been generated, they are used to

produce a reconstructed weather field, W , according to:15

W (i, j, t) =

50∑
n=1

EOFV CSN_n(i, j)PCsyn_n(t)

where i, j and t represent the latitude, longitude and time dimensions respectively and n is the nth weather mode.

SinceW has been constructed from a linear combination of spatial patterns of variability, each of which is spatially coherent,

it retains the property of spatial coherence. The variability evolves as expected under changes in T′global for the first four modes

of variability, as simulated by the RCM, and where extreme conditions, outside the range of the training period, do occur with20

a statistically reasonable frequency due to the stochasticity in the construction of the pseudo PC time series.

Tmin is modelled identically to Tmax with one small change: days with anomalously low Tmax would be more likely to

have anomalously low Tmin. Not accounting for this correlation could result in stochastically modelled Tmin values being

higher than the modelled Tmax value for that day. To avoid that, and to capture the correlation between Tmax and Tmin on any

given day, the same set of random numbers used to generate the values in the synthetic PCn time series for Tmax for a given

day is used to generate the values in the synthetic PCn time series for Tmin. This forces the selection of PCsyn values from the

same region of the PDF for both Tmax and Tmin.

4 Results5

Examples of the Tmax and Tmin time series generated by the EPIC method are shown in Figure 7 for four population centres

in New Zealand together with the associated VCSN time series.
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Figure 7. Example output from 1900 EPIC-generated time series for Auckland, Wellington, Christchurch and Dunedin from 1960 to 2100
under the RCP8.5 GHG emissions scenario. Grey shaded areas show the 1, 10, 25, 75, 90 and 99 percentiles while the blue line shows the
median value on each day. T′max (left column) and T′min (right column) anomalies with respect to the 2000-2010 mean annual cycle. VCSN
time series are overlaid in each panel (red lines).
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Actual EPIC ensemble time series add these anomaly time series to the 2001-2010 VCSN-derived annual cycle climatology

and therefore show no systematic bias with respect to the VCSN data. The EPIC-generated time series also show a long-term

evolution consistent with expectations from RCM simulations, including the effects of the spread in those simulations. While it10

cannot be directly seen from the time series plotted in Figure 7, the EPIC-generated time series also exhibit changes in weather

variability consistent with RCM projections of expected changes in the first four modes of weather variability. The apparent

annual cycle in the anomaly time series reflects the annual cycle in the variance and not an annual cycle in the anomalies;

towards the end of the period there is a true annual cycle in the anomalies from differential seasonal changes in Tmax and

Tmin. The interannual
::::::::::
inter-annual

:
variability of the EPIC ensemble members is lower than that of the observational data set.15

This is due to EPIC not including any terms which describe patterns of variability which occur at time scales of longer than 1

year.

5 Discussion and Conclusions

The EPIC (Ensemble Projections Incorporating Climate model uncertainty) method, is able to generate large ensembles of

daily time series of daily maximum and minimum temperatures that exhibit the following characteristics:20

– No bias with respect to VCSN data.

– Long-term evolution consistent with projections from a suite of RCM simulations, incorporating the uncertainties in-

herent in those simulations as well as additional structural uncertainties that may arise from the use of a wider suite of

RCMs as captured by the use of projections of T′global. T′global time series were generated by a SCM tuned to 19 different

AOGCMS and 10 different carbon cycle models and used as a predictor for the long-term change in Tmax and Tmin.25

– Weather variability with extremes that extend beyond that observed in the VCSN record and that evolve in a way consis-

tent with RCM projections of changes in the four primary modes of weather variability.

– Spatial coherence in weather variability in any single ensemble member is preserved.

As such, EPIC-generated projections are suitable for generating robust PDFs of projections of Tmax and Tmin.

The number of members in each ensemble is essentially limited only by the computing resources available.
:::
The

:::::::::::
stochasticity30

:::::::::
introduced

::
by

:::
the

::::::
Monte

::::
Carlo

:::::::
analysis

::::
and

::::::::
modeling

::
of

:::
the

::::::
weather

:::::
noise

::::::
allows

:::
for

::::
many

::::::::
ensemble

::::::::
members

::
to

:::
be

::::::::
generated

::
for

::
a

::::
given

:::::::
Tglobal. For calculating the PDFs that are delivered to users, we currently generate 19,000 members in each ensemble

(one ensemble for each RCP scenario)
:::::::
member

::::::::
ensemble

:::
(10

::::::::
ensemble

::::::::
members

:::
for

::::
each

::::::
Tglobal):::

for
::
a

::::
given

:::::
RCP

:::::::
scenario at

each 0.05◦ × 0.05◦ grid point across New Zealand.

A web-based tool has been developed to deliver PDFs of Tmax and Tmin for the period 2001-2010 and 2091-2100 to users

along with statistics regarding the change in frequency of extreme events, i.e. days per year with Tmax above 25◦C and 30◦C

and Tmin below 0◦C and 2◦C. The tool is available at http://futureextremes.ccii.org.nz/.5

The next steps for the development of EPIC include extending the range of climate variables to daily surface broadband radi-

ation, surface humidity and precipitation, and incorporating longer term sources of variability, e.g. those generated by El Niño
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and La Niña events, into the stochastic weather model.
:::
The

:::::::::
application

::::::
model

::::::::
weighting

:::::
such

::
as

::
in

:::::::::::::::::::::
Knutti et al. (2017) could

:::
also

:::::
prove

:::::::
valuable

:::
as

:::
not

::
all

::::::::
ensemble

::::::::
members

:::
are

::::::::::
structurally

::::::::::
independant.

:

6 Code and data availability

The source code and data used is available upon request to the corresponding author. The VCSN data set employed is available

from NIWA (https://www.niwa.co.nz/climate/our-services/virtual-climate-stations).
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