
Report on the paper
A Bayesian posterior predictive framework for weighting ensemble regional

climate models
by Fan, Olson and Evans, submitted to Geoscientific Model Development

Summary of the paper

The paper considers multimodel ensembles with two time slices and pro-
poses weights for models based on the agreement between the model output
and the observation during the control period. These weights are then used
to average the posterior distributions of the unknown parameters given each
model, and this averaged posterior is used for prediction of future obser-
vations. The method is then applied to a multimodel ensemble with 12
RCM-GCM chains (3 RCMs driven by 4 GCMs each).

A different presentation of the proposed method

Here is my interpretation of the idea which shows the common points and
the differences to other approaches. The observations in control and fu-
ture period are denoted by y = (y0, ..., yT ) and yf = (yf0 , . . . , y

f
T ), and the

output of model m in control and future period by xm = (xm0 , ..., x
m
T ) and

xm,f = (xm,f
0 , . . . , xm,f

T ). The distribution of these time series depends on

parameters θp, θ
f
p , θm and θfm which are vectors in general. I denote by

“data” all the known time series, i.e. data = (x1,f , . . . , xM,f , x1, . . . , xM , y)
and by η all parameters that appear in the likelihood of data, i.e. η =
(θf1 , . . . , θ

f
M , θ1, . . . , θM , θp). The goal is to obtain a predictive distribution

p(yf |data) =

∫
p(yf |θfp )p(θfp |data)dθfp

The first factor in the integral is the likelihood of future observations which
is given, and the second factor can be decomposed as follows:

p(θfp |data) =

∫
p(θfp |η)p(η|data)dη

The second factor here is the posterior of η given the data and follows
from Bayes formula in the usual way. The first factor quantifies the prior
information about how observations in the future are related to observations
in the control and model output in both periods. Such prior information
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is necessary as the likelihood of the data is independent of θfp . Usually it
is derived from assumptions about model biases and bias changes from the
control to the future period. The paper here uses implicitly the following
joint prior density for θfp and η:

1

M

M∑
m=1

δ(θp − θm)δ(θfp − θfm)
M∏
k=1

p(θk)p(θfk )

where δ is the Dirac delta function. This says that a priori the parameters
for different models and periods are independent, there is one perfect model
for both control and future and each model is equally likely to be the perfect
model. It implies that

p(θfp |data) =
M∑

m=1

w(xm, y)

∫
δ(θfp − θfm)p(θfm|xf,m)dθfm

where

w(xm, y) ∝
∫
p(y|θm)p(θm|xm)dθm

is the posterior probability that m is the perfect model, compare equation
(4).

General evaluation

As I have shown above, the method proposed here is not basically different
from what is used e.g. in Buser et al. (2009), Climate Dynamics 33, 849-
868. The main difference comes from the prior distribution. For me, the
assumption that one model is perfect is not natural. I prefer the idea that all
models have strengths and weaknesses and therefore deviations are rather on
a continuum. But since it is unknown which model is perfect, in the end the
analysis still uses all models and thus the results are presumably not that
different. The second assumption, namely that the quality of a model can
be judged on its behavior during the control alone, is harder to accept. I am
not a climate scientist, but a model that agrees well with the observations
in the control, but has a much slower or a much faster warming than all
the other models seems doubtful to me. On the other hand, a model can
be consistently too warm over the whole period from control until the end
of the future period, but still give a good estimate of climate change. The
authors point out that agreement between models can be due to common
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model errors. On the other hand, a good agreement between models and
observations in the control can also be due to too much tuning, or it can be
just a coincidence in case there are many models.

A different criticism concerns the fact that the dependence between different
model chains is not taken into account. In my experience, there is non-
negligible dependence between RCMs driven by the same GCM and this
should be reflected in the likelihood. However, I guess that this would lead
to complications.

Detailed comments

• p. 2, equation (1): I would use the parametrization

yt = ap + bp(t− t1) + εt, where t1 = t0 +
T

2
.

That is, the slope term is the same, but the intercept is the value in the
middle instead of the beginning of the period. Keeping the intercept
fixed as in equation (9) on p. 5 makes then much more sense to me.

• p. 3, l. 4: In my experience with multimodel ensembles for Europe
(PRUDENCE, ENSEMBLES and CORDEX) it is not true that mod-
els vary less than the observations from one year to the next. On the
contrary, models often overestimate the variability by a factor up to 2.
Also additive corrections of standard errors are strange. Instrumental
and gridding errors should be independent of natural variability which
would lead to σp =

√
σ2m + δ2.

• p.3, l. 21: the weights wm must be normalized to sum to 1, as stated
on p. 4, l. 15.

• Fig. 1: I don’t understand what is shown here: The weight w for simu-
lated x and y values (as suggested by the caption), or the likelihood for
simulated y values (as suggested by the y-axis). In the latter case, it
would be more interesting to show the bivariate likelihood (a function
of µ and σ) with contour lines. But isn’t the likelihood a well-known
concept that doesn’t need illustration?

• p. 4, l. 17: To sample from a mixture distribution, you cannot take
the weighted average of draws from the mixture components. You
have to select first randomly a component and then draw from that
component, as in the procedure described at the bottom of p. 6.
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• Section 2.2: I miss the information about the chosen prior distribu-
tions.

• p. 6, algorithm at the bottom: This can be simplified because the con-
ditional distribution of (T + 1)−1

∑T
t=0 y

f
t given (afb , b

f
b , σ

f
p ) is normal

with mean afp + bp
T
2 and standard deviation σfp/sqrtT + 1. Hence one

can directly simulate (T + 1)−1
∑T

t=1 y
f
t , there is no need to simulate

first the yft . One can even use that the conditional distribution of

T−1
∑T

t=1 y
f
t given that m is the perfect model is a Gaussian mixture

with means afm,i + bm,i
T
2 , standard deviation σfm,i/sqrtT and equal

weights 1/N . So we can directly compute its density or the quantiles.
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