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Abstract.

We present a novel Bayesian statistical approach to computing model weights in climate change projection ensembles. The

weight of each climate model is obtained by weighting the current day observed data under the posterior distribution admitted

under competing climate models. We use a linear model to describe the model output and observations. The approach accounts

for uncertainty in model bias, trend and internal variability, as well as including error in the observations used. Our framework5

is general, requires very little problem specific input, and works well with default priors. We carry out cross-validation checks

that confirm that the method produces the correct coverage.

1 Introduction

Regional climate models (RCMs) are powerful tools to produce regional climate projections (Giorgi et al. (1989); Christensen

et al. (2007); van der Linden et al. (2009); Evans et al. (2013); Evans et al. (2014); Mearns et al. (2013); Solman et al. (2013);10

Olson et al. (2016)). These models take climate states produced by global climate models (GCMs) as boundary conditions, and

solve equations of motion for the atmosphere on a regional grid to produce regional climate projections. The main advantages

of RCMs over GCMs are increased resolution, more parsimony in terms of representing sub-grid scale processes, and often

improved modelling of spatial patterns, particularly in regions with coastlines and considerable topographic features (e.g., van

der Linden et al. (2009); Prommel et al. (2010); Feser et al. (2011)). Current computing power is now allowing for ensembles15

of regional climate models to be performed, allowing for sampling of model structural uncertainty (Christensen et al. (2007);

Giorgi et al. (1989); van der Linden et al. (2009); Mearns et al. (2013); Solman et al. (2013)).

Along with these ensemble modelling studies, methods for extracting probabilistic projections have followed (Buser et al.

(2010); Fischer et al. (2012); Kerkhoff et al. (2015); Olson et al. (2016); Wang et al. (2016)). While these studies all take

a Bayesian approach, the implementations differ. For example, Buser et al. (2010) and Kerkhoff et al. (2015) model both20

the RCM output and the observations as a function of time. However, this implementation uses too many parameters to be

applicable to short (e.g., 20 years) time series common in regional climate modelling. Furthermore, the results are affected by

climate model convergence: the output from the outlier models is pulled towards clusters of converging models. Wang et al.

(2016) method is applicable to relatively short time series, however convergence still influences model predictions.
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Olson et al. (2016) introduced Bayesian Model Averaging to the RCM model processing. In their framework, model clus-

tering does not affect the results, incorporating their belief that clustering can occur due to common model errors. Furthermore,

they provide model weights – a useful diagnostic of model performance. The weights depend on model performance in terms

of trend, bias, and internal variability. While this approach breaks important new ground, it still suffers from shortcomings.

Specifically, the observations are modelled as a function of smoothed model output. However, the smoothing requires sub-5

jective choices, and the uncertainty in the smoothing choice is not explicitly considered. Second, in the projection stage the

Olson et al. (2016) implementation does not fully account for the uncertainty in model biases and in standard deviation of the

model-data residuals.

In this article, we proposed a new method to obtain model weights using raw model output, so the method better accounts

for model output uncertainty. Our framework allows us to compute weights efficiently, simultaneously penalising for model10

bias, deviations in trend and model internal variability. One of the main advantages of the current approach is that improper and

non-informative priors can be used, which makes implementation of the method much more straight forward. In Olson et al.

(2016) framework, subjective and informative parameter choices are required, such choices impact strongly on the resulting

weights and inference. In addition, their framework cannot accommodate improper priors since they need to be able to sample

directly from the prior.15

Below the Bayesian methodology developed is described followed by a Markov Chain Monte Carlo (MCMC) method

to obtain solutions for the posterior distributions. The technique is then applied to a regional climate model ensemble and

compared with results found in previous work ( Olson et al. (2016)).

2 Posterior predictive weighting

In this section, we introduce the Bayesian methodology for weighting model output based on current day observations. We20

suppose that current day observations are denoted as yt, where t= 1, . . . ,T is a set of indices for time. We assume that the

present day observations over time can be described by

yt = ap + bp(t− t0) + εt (1)

where εt ∼N(0,σp), t= t0, . . . t0 +T , and t0 is the first year that the observation is available. This model is reasonable for the

type of short time series temperature data that we consider. We assume that the data yt are independent between observations.25

Let xmt , t= 1, . . . ,T denote data generated by the mth model over the same time period, where m= 1, . . . ,M , and we assume

that each set of model outputs can be adequately modelled by

xmt = am + bm(t− t0) + εt (2)

with εi ∼N(0,σm). Again, xts are assumed independent.

The parameters am, bm,σm can be obtained under the Bayesian paradigm by first specifying a prior distribution p(am, bm,σm),30

and the posterior distribution given data xm is subsequently obtained via Bayes rule,

p(am, bm,σm|xm)∝ L(xm|am, bm,σm)p(am, bm,σm) (3)
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this requires the errors to be independent, but is this true?
eg if there is a longterm change which is not linear


same error or different error as in eq 2

not completely  new see

Min, Seung-Ki, Daniel Simonis, and Andreas Hense. "Probabilistic climate change predictions applying Bayesian model averaging." Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 365.1857 (2007): 2103-2116.



where L(xm|·) denotes the likelihood of obtaining data xm from model m. In this work, non-informative priors are used

throughout.

We would like to weight the models based on the similarity of output xmt to the observation data, this translates to preferring

models whose parameters am, bm,σm are similar to ap, bp,σp. In practice σp is larger than σm, due to instrumental and gridding

error associated with collecting observational data, this additional error is not reflected in the model output. Jones et al. (2009)5

performed error analyses for 2001-2007 for Australian climate data, and found that the root mean squared error for monthly

temperature data range between 0.5 to 1 Kelvin. For our analyses of seasonally averaged temperature data in Section 2.2, we

set the additional error to be δ = 0.5K, resulting weights were largely insensitive to values of δ between 0.5 and 1.

Finally, we define the weight for each model m, to be of the form

wm =
∫
L(y|am, bm,σm + δ)p(am, bm,σm|xm)damdbmdσm (4)10

where L(y|am, bm,σm+δ) denotes the likelihood of observational data y, given the parameters of the mth model, am, bm and

σm. The weight wm fully accounts for the uncertainties associated with the estimates of am, bm and σm, by averaging over

the posterior distribution of p(am, bm,σm|xm). Clearly, the right hand side of Equation 4 will be larger if am, bm and σm + δ

are similar to ap, bp and σp, i.e., if the distributions of y and xm are similar (up to a difference of observational error δ). We

term these weights the posterior predictive weights. Note that Equation 4 is simply the marginal likelihood p(y|xm), i.e., the15

probability of observing data y given xm, averaging over any model parameter uncertainties. The term am and its deviation

from ap in the observation model, can be considered as penalising bias between model output and observation, the deviation

between bm and bp can be thought of as a penalty for trend, and the terms σm and σp account for the differences of model and

observation internal variability.

The ensemble models can now be combined into a single posterior model, using the weights20

p(aBMA, bBMA,σBMA|x1, . . . ,xM ) =
M∑

m=1

wmp(am, bm,σm|xm), (5)

the above expression gives us an ensemble estimate for the posterior distribution of the parameters for a, b and σ from the M

model outputs, and we denote these as aBMA, bBMA and σBMA.

In order to understand this weight, we suppose for the moment that the data y comes from say, a N(0,1). Suppose also that

xm comes from N(µ,σ), then if the posterior distribution of µ and σ are centered around 0 and 1, xm should be assigned25

higher weight. As the values of µ and σ diverge away from 0 and 1, we should see a decrease in the respective weights. Figure

1 plots the likelihood of 50 simulated y values fromN(0,1) distribution, the left panel shows L(y) computed for µ=−2, . . . ,2

and σ = 1, and the right panel shows L(y) computed for µ= 0, σ = 0.01, . . . ,5. The figure shows the changes in L(y), and

hence the weight, as parameter values move away from the true values of 0 and 1.

[Figure 1 about here.]30
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this is a very strange model for the error in inverse variance which is the actual gaussian parameter to be estimated
in a gaussian you are looking for 1/(sigma + delta)^2. such a model is commonly not referred to as uninformed  readily transforms into a well informed one, see discussion in James Bergers book

why not a prior on delta?

but why is this linear in w? shouldn't that come out by an appropriate derivation from the desired posterior? this seems to me an adhoc assumption

eq 5 is a  mixture model for the posterior, so I would expect that an initial mixture model of the priordensities is combined with the likelihood of the observations, to arrive at eq 5

the density of sigma can not be centered on sigma because it is a positive quantity thus there must be some skewness

it is completely unclear who this is computed? is it  special numerical implementation of eq 4? 



2.1 Computation

In most cases, the posterior distributions p(am, bm,σm|xm) in Equation 3 will be analytically intractable, however samples

from this distribution can be easily obtained via Markov Chain Monte Carlo (MCMC). Many software packages performing

MCMC are available, for the analysis in this paper, we used the MCMCpack library of the statistical package R, R Core Team

(2013). MCMC is an iterative algorithm, and it is necessary to check for convergence, and throw away an initial burn-in period5

of the chain. For our simulations, we used 5000 chain iterations, throwing away the initial 500 iterations as burn in, retaining

N = 4500 MCMC samples to work with. For the model and data used in this paper, only a routine application of MCMC was

required, however more complex model and data typically require advanced knowledge of MCMC, see Gilks et al. (1996) for

more on MCMC.

In addition to obtaining simulations from the posteriors of the M ensemble models, the weight calculation in Equation 410

also involves an intractable integral, which we can approximate using standard Monte Carlo

wm ≈
∑

am,i,bm,i,σm,i

L(y|am,i, bm,i,σm,i + δ) (6)

where L(y|am,i, bm,i,σm,i + δ) denotes the likelihood of y under the ith sample of am,i, bm,i and σm,i from the posterior

distribution p(am, bm,σm|xm). Thus, the 4500 MCMC samples obtained for each model are then used to compute the Monte

Carlo sum in Equation 6. Finally, the weights should be normalised by the constraint
∑M
m=1w

m = 1.15

To obtain the Bayesian model averaged posterior samples for Equation 5, we simply set for i= 1, . . . ,N ,

aBMA,i =
M∑

m=1

wmam,i, bBMA,i =
M∑

m=1

wmbm,i, σBMA,i =
M∑

m=1

wmσm,i,

where am,i, bm,i and σm,i denotes the ith MCMC sample for model m.

Finally, the predictive distribution for the future climate yft , t= 1, . . . ,T ′, given future model output denoted as xf,1, . . . ,xf,m,

is defined as

p(yf1 , . . . ,y
f
T ′ |xf,1, . . . ,xf,M ) =

∫
p(yf1 , . . . ,y

f
T ′ |afBMA, b

f
BMA,σ

f
BMA)p(afBMA, b

f
BMA,σ

f
BMA|xf,1, . . . ,xf,M )dafBMAdb

f
BMAdσ

f
BMA

. (7)

20

2.2 Application

Here we consider the same data as Olson et al. (2016) – temperature output from NARCliM (New South Wales/ACT Re-

gional Climate Modeling Project, Evans et al. (2014)). This project is the most comprehensive regional modeling project for

South-East Australia, and the first to systematically explore climate model structural uncertainties. The NARCliM ensemble25

downscales four GCMs (MIROC3.2, ECHAM5, CCCMA3.1, and CSIRO-Mk3.0) with three versions of the WRF modelling

framework (which we call R1, R2, and R3) Skamarock et al. (2008), that differ in parameterisations of radiation, cumulus
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if you assume a multivariate normal for a T dimensional random variable y_t,t=1,T with covariance matrix Sigma the fitting of a linear trend is a linear operation on y giving a twodimension normal distribution on the two parameters a and b, making the analysis directly tractable

this is also not true, if you stay with normal distributions everything stays tractable even in the multivariate case and even in the case that you model uncertainties in the precsions 1/sigma^2 using the invers gamma distribution, 

see Gilks etal 1996

i buy the first tow estimators but not the last one, is realy possible to perform the same linear averaging on the sigmas? 

as the posterior is a mixture model there is no joint sigma which would require a single gaussian to approximate the above eq 5 which is contrary to all assumptions

why this? why not taking eq 5? the assumption of stationarity between the training and the predictive period has to be made anyway, second as stated above you replace the mixture model with a single gaussian giving up the explicit weighting of the single modeloutputs



physics, surface physics, and planetary boundary layer physics. NARCliM output has been evaluated in-terms of its ability to

reproduce the observed mean climate (Ji et al (2016), Olson et al. (2016), Grose et al (2015)), climate extremes (Cortés-

Hernández et al (2015), Perkins-Kirkpatrick et al (2016), Walsh et al (2016), Kiem et al (2016), Sharples et al (2016)), and

important regional climate phenomena (Di Luca et al (2016); Pepler et al (2016)). These studies demonstrate that while the

downscaling has provided added value (Di Luca et al (2016)), a range of model errors are present within the ensemble. For5

the analysis, we focus on seasonal-mean temperature differences as modeled by the inner NARCliM domain RCMs between

years 1990-2009 (present) and 2060- 2079 (far-future). We discard partial seasons from the analysis.

Here we average the temperatures over south-east Australian regions that include New South Wales (NSW) planning regions,

ACT, and Victoria, see Figure 2. Corresponding temperature observations are derived from the AWAP project Jones et al.

(2009). The models are generally cooler than the observations, however in many cases the observations span the mean model10

climate.

In addition to computing weights of the form in Equation 4, we also compute two variants of the weight: one based on

penalising only the intercept am and internal variability σm, and an alternative weight based on penalising only the slope term

bm and internal variability σm. This is achieved by modifying Equation 4 to

wm,I =
∫
L(y|am, bp,σm + δ)p(am,σm|xm)damdσm (8)15

or

wm,T =
∫
L(y|ap, bm,σm + δ)p(bm,σm|xm)dbmdσm (9)

where wm,I penalises models with large biases and wrong internal variability, and wm,T penalises models with the wrong

trend and internal variability. Note that our proposed weight wm penalises bias, trend and internal variability simultaneously.

The weights wm,I and wm,T can be computed by fitting the observation data to the model in Equation 1 to obtain estimates20

for ap and bp, and using only the posterior samples of am, bm and σm to complete the calculation.

Figure 3 shows the weight calculation of each model based on Equation 4, for the CC region in season DJF. We used the

observed data, and the corresponding model output for the years 1990-2009. One can see how the three different types of

weights behave relative to the bias and slope of the model output. For example, in Figure 3, models 1,2,3 (left figure, middle

row) and 10, 11, 12 (left figure, bottom row) have large bias compared to the other models, consequently wm and wm,I gives25

these models almost no weight. On the other hand these models simulated the trend well, and are preferred by wm,T .

The weighted fits are shown in the last two plots in the bottom row of Figure 3. The black line is computed using wm,

according to

ŷt =
M∑

m=1

wm(am + bm ∗ t) (10)

where am and bm are taken as the posterior means of the MCMC samples, and t= 0, . . . ,18. A similar calculation is done30

based on wm,I , and wm,T shown in green and blue respectively. The plots here suggest that the weights wm are perhaps

slightly better than wm,I , both of which are better than wm,T .
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While for most cases, the weights given by wm,I provide similar weighted fits as wm, Figure 4 (showing the FW region for

the season DJF) demonstrates the instances where the weighted fit produced by wm,I is clearly worse than wm, the green line

in the final plot shows that wm,I produces a fit which is very close to the observation at the intercept, but fails to capture trend.

This is unsurprising since this weight penalises deviations of am to ap. Similarly, the blue line wm,T appears to better capture

the trend, but is clearly underestimating the bias, since it fails to penalise for bias. The weight wm is a compromise between5

the two. From the weights plots in the first row, the models that have non-negligible weights under wm,I are 4,5,7,8,10 and 11,

corresponding to models whose intercepts are closest to the intercept of the observation model. The weights wm,T are more

spread out, giving high weights to models 1 and 2 which have large biases but capture the trend well. The last five models take

less weight, this corresponds to models that have smaller trend values. The weights wm allocates most weight to model 6 and

7, both models closely follow the shape of the observed data. In fact, in terms of trend, the weights wm,T generally perform10

similarly to wm, but sometimes they can capture more of the increase in trend better than wm, this was the case in some of the

regions in the SON season. A more formal evaluation of the three different weights will be carried out later in this section.

For the seasons JJA and MAM, the weights wm and wm,I were quite similar in all regions. These weights gave very close

fits to the observation model, while wm,T captured trend well but gave biased fits to the observation. Generally for these two

seasons, fewer models had non-neglible weights compared with DJF and SON. In DJF and SON, the weights were distributed15

more evenly across the models. This suggests that some of the individual models in JJA and MAM were performing strongly.

Interestingly for MAM, the two models that dominated most regions are models 8 and 9, see for example the results for region

CWO in Figure 5. We can see the goodness of fit of these two models individually (see second row, right plot), and clearly they

were markedly better than the other competing models.

The corresponding posterior predictive distribution of projections of change in temperature, for the season DJF over the20

different regions in south-east Australia are plotted in Figure 6. The pdfs show the mean temperature change in the period

2060-2079 compared to 1990-2009. In order to obtain the posterior predictive projection pdf, we begin by first fitting MCMC

for each future model output for the period 2060-2079, to obtain the posterior distribution of p(afm, b
f
m,σ

f
m|xm). Here we ob-

tained 5000 posterior samples of afm.b
f
m and σfm. We then obtain 10,000 random samples for each pdf. Each sample is obtained

as follows:25

1. with probability wm, randomly select a sample from the posteriors of afm.b
f
m and σfm, say afm,i.b

f
m,i and σfm,i

2. simulate a predictive temperature series yft according to

yft ∼N(afm,i + bfm,i(t− t0),σfm,i)

for t= 2060, . . . ,2079 and t0 = 2060. This process produces the posterior predictive samples yft according to Equation 7.

3. compute current model estimate ŷmt = am + bm ∗ (t− t0), for t= 1990, . . . ,2009 and t0 = 1990 where am and bm are pos-

terior means based on model m and current model output xm.

4. Compute the mean of the differences between future prediction yft and ŷmt .30
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This process produces the posterior predictive distributions for the mean difference between the posterior predictive samples

yft and the current estimate of climate.

We present the results for the season DJF in Figure 6. The black lines in Figure 6 correspond to the pdf given by wm, the

green lines correspond to wm,I and the blue lines correspond to wm,T . The red circles indicate the difference between the

means of ŷt and ŷft from each of the 12 models, the cross indicates the mean of these differences. Black vertical lines indicate5

the 95% credibility interval for predictions made with wm (black line). We can see that the pdf based on wm and wm,I are

similar to each other, while the ones given by wm,T deviate substantially from the other two. We also superimposed the pdf

obtained in Olson et al. (2016) in red for comparison, the corresponding 95% credible interval is shown in red vertical lines. It

can be seen that our method generally provides a more precise prediction interval. In fact to properly compare the two predictive

distributions, we compute the posterior predictive distribution using the method described by Olson et al. (2016). Unlike our10

posterior predictive pdf, the pdf in Olson et al. (2016) was obtained by bootstrapping the errors, and does not account for the

uncertainty in the parameter estimates of am, bm and σm. To properly compare the effect of the different weights between our

method and that of Olson et al. (2016) , we also show in Figure 7 the bootstrapped pdf, here the red line indicates the pdf

using Olson et al. (2016) weights with 95% credible interval shown in red vertical lines, and here we can see that Olson et al.

(2016) generally produces significantly larger credible intervals than our approach.15

The incident of bimodality or multimodality is reduced in our approach compared to Olson et al. (2016), suggesting a

smoother mixing of models induced by our approach. Our approach generally produced sharper, more definite peaks in the

posterior pdf. This could be due to the fact that our penalisation is done simultaneously, whereas Olson et al. (2016) considers

the penalty for bias and internal variability separately.

[Figure 2 about here.]20

[Figure 3 about here.]

[Figure 4 about here.]

[Figure 5 about here.]

[Figure 6 about here.]

[Figure 7 about here.]25

In order to assess the ensemble pdf, we performed a series of cross-validation checks. For each region at a given season, we

have 12 current model outputs and 12 future model outputs. We select one of the models,mi and treat the current model output

formi as the truth, and weigh the remaining 11 models. We then cycle through all the 12 models, settingmi = 1, . . . ,12. Figure

8 shows the weighted projections for the region CC in the season DJF, each plot correspond to using one of the 12 models as

truth.30

Table 1 shows the empirical coverage probabilities based on 144 sets of cross-validation datasets for each region, DJF, MAM,

JJA and SON. The coverage probabilities are computed by counting the number of times the true mean change in temperature

7
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falls inside the 95% credibility intervals, taken as the 0.025th and 0.975th quantile value of the posterior predictive samples.

Each weighting method produces a different set of credibility intervals. We see from the table, that both wm and wm,I perform

quite close to the nominal level at 95%, but the pdf’s given by the weight wm,T are too large, always producing coverages

that are much higher than 0.95. Finally, we also computed the mean squared error for each season, this is calculated as the

average squared differences between the posterior predictive sample and the true value, the sum over all regions and all cross-5

validation sets are reported in Table 1. Overall, the weights wm performed consistently better in this respect, and as expected,

wm outperforms wm,I by a larger margin in the seasons DJF and SON. The poorer performance of wm,T is largely due to the

large biases in the wm,T models, one possibility of making wm,T models more useful is to perform some kind of post-hoc bias

correction to the weighted estimates.

[Figure 8 about here.]10

[Table 1 about here.]

3 Conclusions

In this article we have introduced a new framework for computing Bayesian model weights. Our framework is entirely novel,

and requires minimal expert knowledge of model parameters. The fact that we do not require subjective expert prior knowledge

makes the method more robust, since prior elicitation can sometimes be difficult, and different priors can lead to different15

conclusions.

We provided two alternative weight specifications under the same framework to aid interpretation of our weighting. One

of the weights favours models with intercept terms that are close to the observation intercept. This weight does not penalise

for trend deviations very well. An alternative weight which does not penalise for the intercept term can capture trend in the

model very well. Both alternatives have deficiencies, and our proposed weight is a combination of the two. However, there20

are other potential avenues to explore with these alternative weights. For instance, rather than matching the intercept (at time

zero), we might consider matching the estimates around the middle point of the time duration. For the weights based on trend

and internal variability, it can be seen that the weighted model can capture trend extremely well, but fails to account for bias,

but applying some kind of post-hoc bias correction may be a fruitful direction to pursue.

We validated our approach using cross validation, and showed that our posterior predictive distributions obtained correct25

empirical coverages, which is a desired property to possess, and provides us with some confidence with our approach. Our

posterior predictive distributions also provided narrower confidence intervals than previous approaches.

Finally, our model weighting framework is not restricted to data from Normal distributions, or linear models. This approach

could be extended to non-linear and non-Normal models.

Code and Data Availability

Code and data for the analyses carried out in this article is available in the Supplementary Materials.
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Figure 1. Picturial representation of the weight distribution on µ and σ .
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Figure 2. New South Wales planning regions, the ACT and the state of Victoria.
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Figure 3. Results for CC region of south-east Australia, in the DJF season. Top row, weights wm of 12 models based on Equation 4 (L),
Equation 8, wm,I (M) and Equation 9 wm,T (R). Each triplets represents a GCM (MIROC3.2, ECHAM5, CCCMA3.1, and CSIRO-Mk3.0).
Middle row and first plot of last row: fitted observations according to Equation 1 (red dashed line) and fitted model output according to
Equation 2 for 12 models. Last row: weighted fit based on wm in solid black line (M) and weighted fit based on wm,I in solid green line and
weighted fit based on wm,T in solid blue lines (L).
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Figure 4. Results for FW region of south-east Australia, in the DJF season. Top row, weights wm of 12 models based on Equation 4 (L),
Equation 8, wm,I (M) and Equation 9 wm,T (R). Each triplets represents a GCM (MIROC3.2, ECHAM5, CCCMA3.1, and CSIRO-Mk3.0).
Middle row and first plot of last row: fitted observations according to Equation 1 (red dashed line) and fitted model output according to
Equation 2 for 12 models. Last row: weighted fit based on wm in solid black line (M) and weighted fit based on wm,I in solid green line and
weighted fit based on wm,T in solid blue lines (L).
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Figure 5. Results for CWO region of south-east Australia, in the MAM season. Top row, weights wm of 12 models based on Equation 4 (L),
Equation 8, wm,I (M) and Equation 9 wm,T (R). Each triplets represents a GCM (MIROC3.2, ECHAM5, CCCMA3.1, and CSIRO-Mk3.0).
Middle row and first plot of last row: fitted observations according to Equation 1 (red dashed line) and fitted model output according to
Equation 2 for 12 models. Last row: weighted fit based on wm in solid black line (M) and weighted fit based on wm,I in solid green line and
weighted fit based on wm,T in solid blue lines (L).
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Figure 6. Posterior predictive projections of DJF temperature change in 2060-2079 compared to 1990-2009 for regions in south-east Aus-
tralia. Black lines correspond to wm weights, green lines correspond to wm,I weights and blue lines to wm,T weights. Red lines are results
from Olson et al. (2016). Black vertical lines represent 95% credible intervals, and red vertical lines represent the 95% credible intervals
obtained by Olson et al. (2016). Circles represent the difference between the changes in temperature using the individual models. Black
cross indicates the simple ensemble mean of the changes in temperature.
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Figure 7. Bootstrapped weighted projections of DJF temperature change in 2060-2079 compared to 1990-2009 for regions in south-east
Australia. Black lines correspond to wm weights, green lines correspond to wm,I weights and blue lines to wm,T weights. Red lines are
results from Olson et al. (2016). Black vertical lines represent 95% credible intervals, and red vertical lines represent the 95% credible
intervals obtained by Olson et al. (2016). Circles represent the difference between the changes in temperature using the individual models.
Black cross indicates the simple ensemble mean of the changes in temperature.
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Figure 8. Cross validation of weighted projections of DJF temperature change in 2060-2079 compared to 1990-2009 for region CC in south-
east Australia. Black lines correspond to wm weights, green lines correspond to wm,I weights and wm,T weights. Each plot represents the
weighted posterior predictive distribution of temperature change using the current ith model output as observation and the remaining 11
models are weighted. Vertical lines represent 95% credible intervals. Crosses indicate the actual changes between the future model output
and the current model output of the ith model.
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DJF MAM JJA SON
MSE Cov MSE Cov MSE Cov MSE Cov

wm 48.35 0.944 14.40 0.951 14.13 0.910 41.89 0.917
wm,I 51.61 0.951 14.61 0.965 14.39 0.931 43.53 0.930
wm,T 56.93 0.993 30.94 0.979 20.50 0.986 40.42 1.000

Table 1. Mean squared error and 95% coverage probabilities for the three sets of weights.
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