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Abstract. The accurate assessment of profile soil moisture for spatial domains is usually difficult due to the associated costs, 

strong spatial-temporal variability, and nonlinear relationship between surface and profile moisture. Here we attempted to 

use observation operators built by Cumulative Distribution Frequency (CDF) matching method to directly predict profile soil 

moisture from surface measurements based on multi-station in situ observations from the Soil and Climate Analysis Network 

(SCAN). We first analyzed the effects of temporal resolution (hourly, daily and weekly) and data length (half year in non-

growing season, half year in growing season, one year, two years and four years) on the performance of observation 

operators. The results showed that temporal resolution had a negligible influence on the performance of observation 

operators. However, data length significantly changed the prediction accuracy of observation operators, and a two-year 

interval was identified as the optimal data length in building observation operators. A dataset with a two-year duration was 

therefore used to test the robustness of observation operators in three primary climates (humid continental, humid subtropical 

and semiarid) of the continental USA, with the popular exponential filter employed as a reference approach. The results 

indicated that observation operators reliably predicted profile soil moisture for the majority of stations in both calibration and 

validation periods and performed almost equally well with the exponential filter method. This suggests that observation 

operators are a feasible statistical tool for depth scaling of soil moisture. The findings here have the potential to be applied in 

profile soil moisture prediction from surface measurements at a range of environments if the target site has long enough (two 

years) soil moisture observations even with coarse temporal resolutions.  
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25 1 Introduction 

Soil moisture in the root-zone profile is a key variable that influences the agricultural, hydrological, ecological and 

meteorological systems of the Critical Zone. It determines water availability to crops and participates in the partitioning of 

available energy into sensible and latent heat and of precipitation into infiltration and runoff (Montaldo and Albertson, 2003). 

Continuous and accurate measurement of profile soil moisture, however, is difficult because of expensive field 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-292
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 12 July 2017
c© Author(s) 2017. CC BY 3.0 License.



2 
 
 

5 

10 

15 

20 

25 

30 

measurements, strong spatial-temporal variability, and the nonlinear relationship between surface and profile soil moisture 

(Han et al., 2012a; Dumedah et al., 2015). In contrast, the collection of surface soil moisture data is much easier. At fine 

scales (e.g. field, hillslope, or small watershed), surface soil moisture can be attained from portable soil moisture sensors or 

derived using cosmic-ray neutron probes and ground-penetrating radar (Penna et al., 2013; Ferrara et al., 2013; Baatz et al., 

2014). At larger scales (e.g. regional and global scales), remote sensing techniques can provide surface soil moisture data at 

fine spatial or temporal resolution (Brocca et al., 2011; Panciera et al., 2014). However, these instruments generally measure 

soil moisture at relatively shallow layers. For example, microwave remote sensing methods (either active or passive) retrieve 

near-surface soil moisture that only reaches several centimetres beneath the soil surface (Draper et al., 2011). Therefore, it is 

necessary to link surface soil moisture to profile soil moisture via robust depth-scaling approaches. 

 

A variety of approaches for predicting profile soil moisture from surface measurements have been proposed, ranging from 

simple statistical relationships to physically-based retrieval (Wagner et al., 1999). The primary methods used today can 

generally be classified into three different types: (1) data assimilation methods; (2) analytical methods; and (3) statistical 

methods. Data assimilation methods refer to techniques which incorporate surface soil moisture measurements (e.g. remote 

sensing products) into physically-based hydrologic models to obtain an analysis that best represents profile soil moisture and 

a number of data assimilation algorithms have been developed (Evensen, 1994; Walker et al., 2002; Heathman et al., 2003; 

Reichle et al., 2007; Draper et al., 2011; Dumedah et al., 2015). However, its application may be constrained by the required 

model parameters (soil properties, vegetation features and atmospheric forcing), which are difficult to obtain at larger scales, 

as well as by uncertainties related to the physical description of soil hydrological processes (Albergel et al., 2008; Hu and Si, 

2014). The analytical methods require fewer input parameters and are computationally more efficient than data assimilation 

methods. They are generally mathematically derived from physically-based relationships of water flows that include some 

simplification assumptions (Arya et al., 1983; Camillo and Schmugge, 1983; Wagner et al., 1999; Manfreda et al., 2014). 

Currently, the exponential filter method introduced by Wagner et al. (1999) is likely the most popular analytical method 

since it only requires one parameter, the characteristic time length (T). This method has successfully predicted subsurface 

soil moisture from surface observations for multiple regions that vary in climatic and/or soil conditions (Ceballos, et al., 

2005; Albergel et al., 2008; Brocca et al., 2011; Ford et al., 2014; Peterson et al., 2016). In addition to the two above 

methods, statistical models are also introduced to do depth scaling of soil moisture due to its simplicity and are completely 

data driven. These methods include linear and nonlinear regression models (Jackson, 1986; Shi et al., 2014), artificial neural 

network (Bono and Alvarez, 2012), and time stability analysis (Hu and Si, 2014; Gao et al., 2015) among others. However, 

the existing statistical methods usually defined surface soil deeper than 20 cm even down to 40 cm which is far beyond the 

scope of satellite sensors. This restricts the application of statistical methods to profile soil moisture estimation because in 

many cases only surface measurements (≤ 5 cm) are available. Despite the existing deficiency, robust statistical methods are 
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still appealing in predicting profile soil moisture because of their simplicity and applicability to a wide range of 

environments.  

 

The Cumulative Distribution Frequency (CDF) matching method has proven to be both efficient and widely applicable 

through the construction of observation operators to adjust for the systematic differences in soil moisture that arise from 

different sources such as in situ measurements, modelled outputs and remote sensing retrievals (Reichle and Koster, 2004; 

Drush et al., 2005; Brocca et al., 2011; Parrens et al., 2014). The method has also been extended to the spatial upscaling of 

point soil moisture measurements (Han et al., 2012b) and spatial transferring of soil moisture between different areas (Gao et 

al., 2013). The CDF matching method is expected to be applicable to the presented study because soil moisture at various 

layers can be regarded as belonging to different spatial domains or sources. In this way, profile soil moisture could be 

predicted by adjusting for surface soil moisture through the building of the observation operators for surface and profile data.  

 

The presented research here is not to mask the promising of physically-based and analytical models, but aims to introduce a 

feasible statistical approach to give robust predictions of profile (100 cm) soil moisture from surface (5 cm) observations. 

Here we tested the feasibility and robustness of observation operators built by CDF matching method in scaling surface soil 

moisture to profile soil moisture by using multi-station in situ soil moisture observations from the Soil Climate Analysis 

Network (SCAN) in the United States. The paper is arranged as follows. First, we analysed how the resolution and length of 

soil moisture time series affected the performance of observation operators. The results were used to choose an appropriate 

temporal resolution and length for the construction of observation operators. We then tested the feasibility and robustness of 

observation operators under different climate regions in the continental United States.  

2 Materials and methods 

2.1 Soil moisture datasets 

Here the feasibility and robustness of a CDF matching method in the depth scaling of soil moisture from surface to profile 

was tested using in situ soil moisture measurements from the Soil Climate Analysis Network (SCAN). SCAN focuses 

primarily on agricultural areas in the US and consists of over 200 soil moisture monitoring stations across different climate 

regions, mainly serving to monitor drought and climate change. Soil moisture content at depths of 5, 10, 20, 50, and 100 cm 

was measured at each station with HydraProbe soil moisture sensors (Stevens Water Monitoring Systems Inc., Portland, OR). 

All SCAN soil moisture data, at both daily and hourly resolution, are available at the National Water and Climate Center 

website (www.wcc.nrcs.usda.gov/scan). A total of 12 stations were chosen for analyses according to the objectives of this 

study. General information about these 12 stations is presented in Table 1. Although these data have been corrected by data 

managers, we were able to detect outliers in the datasets. To identify outliers in one layer, soil moisture at this depth was 
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linked to values at adjacent depth(s) and rainfall events. On the one hand, if soil moisture in one layer clearly increased 

during some period but no rainfall events occurred before and meanwhile the soil moisture in adjacent layers did not show 

clear increase, the soil moisture values in this layer during this period were identified as outliers. On the other hand, if soil 

moisture in one layer clearly decreased whereas soil moisture in adjacent layers showed no clear decrease, then these soil 

moisture values were also identified as outliers. The outliers were then excluded from the analyses.  

 

In this study, surface soil moisture refers to soil moisture in the 5 cm, and the profile soil moisture refers to that in the 0-100 

cm. The profile soil moisture is a depth-weighted mean of the values in the 5 (layer 1), 10 (layer 2), 20 (layer 3), 50 (layer 4) 

and 100 (layer 5) cm. It is calculated as follows: 
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                                                            (1) 

where θp refers to the profile soil moisture content (m3 m-3); θi (i=1, 2, …, 5) refer to soil moisture content at the ith layer (m3 

m-3); and Li (i=1, 2, …, 5) refer to the depth of the ith soil layer (m). 

2.2 Observation operators 

2.2.1 The CDF matching method 

The Cumulative Distribution Frequency (CDF) matching method was used to create observation operators. The observation 

operators were then used to predict profile soil moisture content from surface measurements by adjusting for the systematic 

differences between these two layers. It is important to note that the CDFs used in this study were built from soil moisture 

time series and assume that all soil moisture values are equally probable (Pachepsky and Hill, 2016).  

 

As shown in Figure 1, the CDF matching method rescales the CDF of one dataset (surface soil moisture time series in this 

study) to match that of another dataset (profile soil moisture time series in this study). In previous studies, a third-order 

polynomial was usually employed in defining observation operators (Drusch et al., 2005; Han et al., 2012). Since it is the 

first application of this method in soil moisture depth upscaling, a pre-analysis was done to identify the optimal order by 

using datasets in stations of Perdido Riv Farms and Willow Wells. It showed that the RMSE values decreased clearly with 

polynomial order from one to five but weak gain was obtained at higher order (Figure 2). Therefore, a fifth-order polynomial 

was used here considering the accuracy of fitting and the principle of parsimony. The technical procedure of this method 

progressed as follows:  

(1)  The in situ measured surface (θs) and profile (θp) soil moisture datasets were ranked.  

(2) Next the differences (Δ) in soil moisture between corresponding elements in the surface and profile datasets were 

calculated as: 
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(3) A fifth-order polynomial fit was then used to quantify the relationship between θs and Δ as: 
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where is the predicted difference of Δ, and k0, k1, k2, k3, k4 and k5 are parameters. The polynomial Eq. (3) serves the 

observation operators to eliminate the systematic difference between θs and θp.  

̂

(4) Profile soil moisture could then be estimated by using the observation operators to rescale surface measurements.  

                                                                                                                                                                             (4) ˆ ˆ
p s  

     where ˆ
p is the predicted profile soil moisture.  

2.2.2 Time series resolution effect 

Three different temporal resolutions (hourly, daily, and weekly) were used to probe how time series resolution affects the 

performance of observation operators. To this end, three stations from SCAN with varying soil moisture values and surface-

profile soil moisture dynamics were selected for analysis, including Shagbark Hills in Iowa, Perdido Riv Farm in Alabama, 

and Sevilleta in New Mexico. These stations were chosen because of the continuity and completeness of soil moisture 

datasets at both daily and hourly resolutions.  
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The testing procedure progressed as follows. First, hourly data within a given period were used to build observation 

operators. Surface moisture at daily (weekly) resolution during the same period was then as inputs into these observation 

operators to predict the corresponding daily (weekly) profile soil moisture. Next, observation operators derived from daily 

data were used to predict hourly (weekly) profile soil moisture in corresponding periods. Finally, observation operators 

derived from weekly data were used to predict hourly (daily) profile soil moisture in corresponding periods. Statistical 

metrics, including determination coefficient (R2), root mean square error (RMSE) and mean bias error (MBE), were used to 

judge whether the developed observation operators were transferable between different temporal resolutions. The RMSE and 

MBE are defined as:  
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where ,obs i and ,est i represent the observed and estimated profile soil moisture content, respectively, and N is the number 

of soil moisture values in the corresponding time series.  

5 
 
 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-292
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 12 July 2017
c© Author(s) 2017. CC BY 3.0 License.

Reviewer
Comment on Text
Please indicated the specific period used for each SCAN station.



6 
 
 

5 

10 

15 

20 

25 

30 

2.2.3 Time series length effect 

Three stations (Blue Creek, BC; Green River, GR; and Little Red Fox, LRF) in Utah with varying surface and profile soil 

moisture time series from 2010 to 2015, as well as continuous and complete datasets, were used to probe how time series 

length affects the performance of observation operators. Five different data lengths were chosen: a half-year growing season 

(Apr. 1 to Sept. 30; DL1); a half-year non-growing season (Oct. 1 to Mar. 31; DL2); one calendar year (DL3); two calendar 

years (DL4); and four calendar years (DL5). Four replicates were conducted for each data length. Specifically, soil moisture 

from the years of 2010, 2011, 2014, and 2015 was used to establish the observation operators for data lengths DL1, DL2 and 

DL3 (calibration), and data from 2012 and 2013 were used for validation. For data length DL4, soil moisture from four 

different two-year combinations (2010&2011, 2014&2015, 2010&2014 and 2011&2015) was used for calibration, and data 

from 2012 and 2013 were used for validation. As data length DL5 covers four years, four different four-year combinations 

(2010&2011&2012&2013, 2011&2012&2013&2014, 2012&2013&2014&2015, and 2010&2011&2014&2015) were used 

for calibration. The two years that were not included in each of the specified combinations were used for validation. 

Statistical metrics (R2, RMSE, and MBE) were used to test the feasibility and robustness of observation operators built from 

soil moisture datasets that varied in the length of both calibration and validation periods. These analyses served to identify an 

appropriate data length for the construction of robust observation operators.  Note that the surface measurements should also 

be ranked first during validation, after which they can act as inputs for the observation operators that derive ranked profile 

soil moisture.  

2.2.4 Testing procedures in applications 

The constructed observation operators were then applied to different climate regions to test how robust the predictions are 

for areas that vary in soil moisture content.  Three primary climate regions in the continental USA were chosen (humid 

continental, humid subtropical, and semiarid) and three stations were selected for each climate region based on the continuity 

and completeness of soil moisture datasets. Detailed information regarding these nine stations is presented in Table 1.  

2.3 Exponential filter 

A popular analytical method, the exponential filter, the robustness of which has been validated in various climates (Wagner 

et al., 1999; Ceballos et al., 2005; Albergel et al., 2008; Brocca et al., 2011; Ford et al., 2014; Gao et al., 2014; Peterson et al., 

2016), served as a reference method to judge the performance of observation operators in different climate regions.  

 

According to Wagner et al. (1999), a soil profile can be divided into the surface layer and a second (subsurface) layer. The 

exponential filter was introduced to predict second-layer soil moisture (w2) from surface measurements (w1). This method 

assumes that the water flux between surface and subsurface layers is proportional to the difference in soil moisture between 

these two layers. The surface and subsurface soil moisture can be linked as follows: 
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Assuming C is constant and T=L/C, the solution of Eq. (7), is derived by integration as: 
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where L2 is the depth of the second layer, C is the area-representative pseudo-diffusivity constant, and T represents the 

characteristic time length. Generally, T is considered to be an integrative parameter that explains all the hydrologic, 

pedologic and ecological processes that influence soil moisture variations with depth (Wagner et al., 1999; Albergel et al., 

2008). To simplify the computation, Albergel et al. (2008) gave the recursive formulation of Eq. (8) as follows: 
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where ms represents soil moisture at the surface layer, and SWI2 represent the soil water index (SWI) of the second layer; Kt 

is the gain of the exponential filter. The dimensionless SWI represents the scaled soil moisture content, which ranges from 0 

to 1 based on the minimum and maximum values of each time series.  

 

It is important to note that predicted second-layer soil moisture (SWI2) via Eq. (9) provides scaled values. To compare these 

values with results from observation operators, SWI2 must be rescaled by using the maximum ( ) and minimum 

( ) values of the corresponding original time series of the second layer as follows: 
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2 2( ) 2,max 2,min 2,minˆ ( ) SWI ( )tw t w w w                                                                                                                (11) 

where is the rescaled value of predicted soil moisture at the second layer, m3 m-3. The rescaled value  and the 

surface measurements  can then be coupled to obtain the profile soil moisture as:  

2ˆ ( )w t 2ˆ ( )w t

1( )w t

2 2 1

2 1

ˆ ( ) ( )
ˆ ( )p

w t L w t L
w t

L L

  



1                                                                                                                         (12) 

where  is the predicted profile soil moisture at time t, and L1 is the depth of surface layer. ˆ ( )pw t
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3 Results & discussion 

3.1 The effect of time series resolution and length 

The surface and profile soil moisture time series at different temporal resolutions for the Shagbark Hills, Perdido Riv Farms 

and Sevilleta stations are used to probe the effect of data resolution on the performance of observation operators. The 

statistical metrics, i.e., RMSE, R2 and MBE, for the application of observation operators built from a dataset of a certain 

resolution to another dataset with a different resolution are presented in Table 2. Generally, observation operators that had 

been calibrated using datasets of a different resolution performed well; there was little variation between the three statistical 

metrics from all stations when the operators were transferred from finer (coarser) to coarser (finer) resolutions. Overall, the 

temporal resolution of soil moisture time series had a relatively weak effect on the performance of observation operators, and 

hence can be ignored during the construction of observation operators. In this study, observation operators were built from 

soil moisture data at a daily resolution in order to reach a compromise between computing efficiency and operator robustness.  

 

The statistics of data length effects on the performance of observation operators in both calibration and validation periods are 

shown in Figure 3. In general, observation operators performed better in calibration than in validation periods, especially for 

half-year durations (DL1 and DL2). Furthermore, these metrics behaved differently between calibration and validation 

periods with the increase of data lengths. In calibrations, lower values of RMSE were observed at half-year durations (DL1 

and DL2), peaked at one-year duration (DL3) and then decreased slightly for all of the three stations; and the values of R2 in 

DL1 and DL2 were clearly higher than in longer durations. In contrast, in validations, longer durations (DL3, DL4 and DL5) 

generally showed lower values in RMSE and MBE and higher values in R2, indicating higher prediction accuracy in longer 

duration. Moreover, longer data durations (DL3, DL4 and DL5) generally showed clearly lower uncertainty in either 

calibrations or validations, represented by lower error bars in Figure 3, than the other two shorter durations (DL1 and DL2). 

These results indicated that the observation operators became more representative, producing more robust predictions of 

profile soil moisture in longer data lengths. Compared to calibration periods, the performance in validation periods can serve 

as a better reference for judging data length effects because independent datasets are employed. Although the DL3, DL4 and 

DL5 showed almost equally good mean values of RMSE, R2 and MBE in validation periods, the DL4 overall showed the 

lowest uncertainty for all metrics in either calibration or validation period. Therefore, the observation operators in this study 

were built based on a data length of two years.  

3.2 Application in various climates 

In this section, we applied the method of observation operators built by the CDF matching method under nine stations 

distributed across three primary climate regions in the continental USA. Here, we first used correlation analysis to 
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characterize the couple strength of surface and profile soil moisture. Then the feasibility and robustness of observation 

operators was tested by employing the exponential filter as a reference method. 

 

3.2.1 Correlation analysis 

Lagged cross correlation analysis was used to characterize surface-profile soil moisture relationships and autocorrelations of 

each of surface and profile soil moisture were performed as well under various climates. This is because subsurface soil 

moisture shows a delayed response to atmospheric variables (e.g. precipitation and evapotranspiration) and cross correlation 

analysis is able to characterize lagged relations (Georgakakos et al., 1995; Mahmood et al., 2012; Ford et al., 2014). As 

shown in Figure 4, the cross correlation coefficient peaked at no lag or one-day lag and the stations of Perdido Riv Farms 

and Willow Wells showed clear periodicity. It is clear that the maximum correlation coefficient varied with climates; the 

humid subtropical climate had the highest correlation coefficient of 0.92±0.01 (mean ± one standard deviation), followed by 

humid continental climate of 0.75±0.13 and semiarid climate of 0.59±0.19. This means that surface and profile soil moisture 

under humid subtropical climate are better coupled than the other climates and the profile soil moisture is expected to be 

better predicted under this climate via depth scaling methods. The higher cross correlation coefficients in humid subtropical 

can be ascribed into the highly similar autocorrelation patterns of surface and profile soil moisture (Figure 4). However, 

autocorrelations of surface and profile soil moisture varied clearly in magnitude and behaviour in station of Molly Caren 

under humid continental and stations of Holden and Sevilleta under semiarid, as can be responsible to the relatively low 

cross correlations there.  

 

3.2.2 Testing of observation operators 

The first step of the exponential filter method is the calculation of the optimal value for the T parameter (Topt), which is 

obtained by maximizing the Nash-Sutcliffe coefficient (NSC; Nash and Sutcliffe, 1970); the T value at which NSC peaks is 

regarded as the Topt for a given dataset (Wagner et al., 1999; Albergel et al., 2008). The relationships between the T 

parameter and NSC at various stations in calibration period are shown in Figure 5. The Topt varied from 1 to 23 days for 

different stations, except for the Holden station, which had negative NSC values over the whole range of T values under 

consideration (0-50 days) and did not even peak when T was set to 100 days (data not shown here). In-depth analysis showed 

that the Topt value was highly dependent on the type of climate. The average Topt values for the humid continental, humid 

subtropical and semiarid climates were 14.0, 1.3 and 17.5 days, respectively. This is partly consistent with the findings of 

Albergel et al. (2008), who also found that climate impacts Topt, yet reported a relatively weak effect. According to Albergel 

et al. (2008), the Topt reflects the response of second-layer soil moisture (w2) to surface moisture (w1), with a higher Topt 

representing a slower response. In the humid subtropical climate, a relatively high soil moisture content over the whole 

profile (see Figure 9) reflects large soil hydraulic conductivity and a relatively fast response of w2 to w1. In the semiarid 
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climate, however, both surface and subsurface soil moistures are relatively low, which results in low soil hydraulic 

conductivity and a slower second-layer response to surface infiltration.  

 

Prior to the testing of observation operators, each soil moisture time series was checked to avoid any outlier. Soil moisture 

datasets from 2014 and 2015 were used as calibration data for both methods at all stations except for Perdido Riv Farms and 

Willow Wells, where datasets from 2013 and 2014 and from 2012 and 2013 were employed, respectively. Data from either 

2013 (2016 for Perdio Riv Farms, and 2010 for Willow Wells) were used for validation depending on the completeness of 

dataset. Figures 6 to 8 show the predicted profile soil moisture time series from observation operators and exponential filters 

in humid continental, humid subtropical and semiarid climates, respectively. Generally, the observation operators reproduced 

reliably the profile soil moisture for the majority of stations in both calibration and validation periods, and performed overall 

equally well with the exponential filter method. This can be attributed to the perfect adjusting of the cumulative distribution 

frequencies of surface moisture and profile data by observation operators (the left graphs in Figure 6-8). However, some 

clear deviations between measured and predicted values were observed in Molly Caren Station during calibration period and 

Holden and Willow Wells stations during validation period. These significant mismatches can be attributed to the relatively 

poor coupling of surface and profile soil moisture (Figure 4). Statistical metrics of the predicted results for all three climates 

are shown in Figure 9. Similar RMSE and R2 values were observed between the observation operators and exponential filter 

methods during either calibration or validation period, which agrees with the visual observations in Figure 6-8. However, for 

the metric of MBE, zero values for observation operators were observed in all stations but clear non-zero values for the 

exponential filter method during calibration period. In validation period, non-zero values of MBE were also observed for 

observation operators. Overall, the results indicated that observation operators built from a soil moisture dataset with a 

length of two years were feasible in scaling surface soil moisture to obtain profile predictions.  

 

We further analysed the effects of climates on the performance of both observation operators and the exponential filter 

method according to the statistics in Figure 9.  The ANOVA results indicated that the climate region influenced to different 

extents the predictions of profile soil moisture for both methods. A semiarid climate showed significantly (P<0.05) lower 

RMSE than the other climates in calibration period independent of methods. However, this did not mean that the semiarid 

climate had better prediction accuracy than the other climates because it also showed significantly (P<0.05) lower R2 in both 

calibration and validation periods. From Figure 8, it can be seen that mismatches existed between measured and predicted 

values through the whole study period independent of methods, and the relatively lower RMSE can be ascribed into the 

lower soil moisture contents there. Combining the findings in section 3.2.1 that clearly lower maximum cross correlations 

under semiarid climate (Figure 4), it can be gained that a relatively poor coupling between surface and subsurface soil 

moisture exists in semiarid climates. Furthermore, the humid subtropical climate showed clearly lower RMSE and 

meanwhile the highest R2 (>0.90) compared to the other climates, indicating relatively good coupling of surface and 
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subsurface soil moisture there. A possible explanation is that the humid subtropical has generally high soil moisture content 

(Figure 7) and possible high soil hydraulic properties because of silt loam soils there (Silver City in Table 1), which could 

strengthen the connections of water flow between surface and subsurface soils.  

 

3.3 Discussion 

Here we introduced a simple and feasible statistical method, the CDF matching method, in predicting profile soil moisture 

from surface observations. The application of this method in various climates demonstrates it can be applied to a variety of 

environments if there is long enough soil moisture time series (two years). On the one hand, the advantage of this method 

over other statistical methods such as linear and non-linear regressions (Bono and Alvarez, 2012) and time stability analysis 

(Hu et al., 2014; Gao et al., 2015) is that only surface (5 cm) soil moisture is needed as the input. And its advantage relative 

to data assimilation and analytical models is that no clear assumption is needed in addition to its simplicity. On the other 

hand, the primary disadvantages of this method can be summarized into two aspects. First, outliers in soil moisture data can 

affect greatly the robustness of observation operators built by the CDF matching method, and hence outliers should be 

carefully kicked out before building observation operators. Second, the deviations between predicted and measured soil 

moisture cannot be interpreted from the perspective of physically based grounds.  

 

Uncertainty is generally one of the main issues when statistical methods are applied. In calibration, the primary uncertainty 

of the method here can be attributed into the fitting curves (five-order observation operators). Generally, the fitting curve 

cannot completely match the relationship between surface moisture content (θs) and the difference (Δ) between surface and 

profile soil moisture. In validation, the relationship between θs and Δ could deviate to some extent with respect to that in 

calibration, and this deviation is expected to increase prediction errors. Moreover, it is noteworthy that the method here 

cannot replace data assimilation and analytical models in depth scaling of soil moisture because it completely does not work 

in ungauged regions. However, this method could be a good choice to obtain profile soil moisture if the target site has long 

enough soil moisture observations even with coarse temporal resolutions.  

4. Conclusions 

In this study, we tested the feasibility and robustness of observation operators built by Cumulative Distribution Frequency 

(CDF) matching for the depth scaling of soil moisture from surface to profile by using datasets of multiple stations in the 

Soil and Climate Analysis Network (SCAN). The time series resolution (hourly, daily and weekly) had negligible effects on 

the performance of observation operators and daily resolution provided a good compromise between computing efficiency 

and operator robustness. In contrast, time series length was shown to significantly affect the prediction accuracy of 

observation operators. Our analyses showed that soil moisture data from a two-year interval produced optimal predictions, 
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and can be used as the standard dataset from which to build observation operators. By using the popular exponential filter 

method as a reference approach we were able to show that the application of observation operators to three primary climates 

(humid continental, humid subtropical and semiarid) in the continental USA can reliably predict profile (0-100 cm) soil 

moisture from only surface (5 cm) observations for the majority of stations. The CDF matching method described here may 

be applicable to depth scaling of soil moisture under a variety of environments if the target site has long enough (two years) 

soil moisture observations even with coarse temporal resolutions. 
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Table 2. Statistics of the performance of observation operators built by dataset of one resolution and their applications in 

datasets with other resolutions. The statistical metrics were root mean square error (RMSE, m3 m-3), R2 and mean bias error 

(MBE, , m3 m-3).  
Shagbark Hills Perdido Riv Farms Sevilleta 

Statistics 
RMSE R2 MBE RMSE R2 MBE RMSE R2 MBE

Calibrated by hourly data 2.91E-2 0.774 0.000 1.07E-2 0.878 0.000 1.04E-2 0.445 0.001

Applied to daily data 2.85E-2 0.779 0.000 9.04E-3 0.905 0.000 8.95E-3 0.547 0.000

Applied to weekly data 2.91E-2 0.775 0.000 9.32E-3 0.905 0.000 9.67E-3 0.472 0.000

Calibrated by daily data 2.86E-2 0.778 0.000 9.11E-3 0.905 0.000 9.15E-3 0.544 0.000

Applied to hourly data 2.93E-2 0.772 0.000 1.08E-2 0.877 0.000 1.54E-2 0.556 0.001

Applied to in weekly data 2.92E-2 0.774 -0.001 9.38E-3 0.905 0.000 9.96E-3 0.468 0.000

Calibrated by weekly data 2.94E-2 0.772 0.000 9.34E-3 0.906 0.000 9.89E-3 0.463 0.000

Applied to hourly data 2.98E-2 0.768 0.001 1.09E-2 0.877 0.000 1.84E-2 0.503 0.001

Applied to daily data 2.92E-2 0.773 0.001 9.12E-3 0.905 0.000 9.17E-3 0.539 0.000
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Figure 1. A graph shows how the cumulative distribution frequency (CDF) of surface soil moisture is adjusted into that of 

profile soil moisture by observation operators. 
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Figure 2.  Root mean square error (RMSE) changes with the increasing polynomial order by using the cumulative 

distribution function (CDF) matching method. 
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Figure 3. Statistics of the root mean square error (RMSE), R2 and mean bias error (MBE) for data length of soil 

moisture time series on the performance of observation operators in both calibration and validation periods. The error bar 

represents one standard deviation. 
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Figure 4. Cross correlations and autocorrelations of surface and profile soil moisture in the nine stations under various 

climates. 5 
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Figure 5. A graph shows how the cumulative distribution frequency (CDF) of surface soil moisture is adjusted into that of 

profile soil moisture by observation operators. 
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Figure 6. The predicted profile soil moisture by cumulative distribution frequency (CDF) matching (Profile (CDF)) and 

exponential filter (Profile (SWI)) during calibration and validation periods for the three sites in humid continental climate. 

The three graphs in the left shows the CDFs of surface and measured and predicted profile soil moisture. 
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Figure 7. The predicted profile soil moisture by cumulative distribution frequency (CDF) matching (Profile (CDF)) and 

exponential filter (Profile (SWI)) during calibration and validation periods for the three sites in humid subtropical climate. 

The three graphs in the left shows the CDFs of surface and measured and predicted profile soil moisture. 
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Figure 8. The predicted profile soil moisture by cumulative distribution frequency (CDF) matching (Profile (CDF)) and 

exponential filter (Profile (SWI)) during calibration and validation periods for the three sites in semiarid climate. The three 

graphs in the left shows the CDFs of surface and measured and predicted profile soil moisture.  
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Figure 9. Statistics of the root mean square error (RMSE), R2 and mean bias error (MBE) for the performance of observation 

operators and exponential filter methods in the different sites in humid continental, humid subtropical and semiarid climates. 

Different lowercase letters above bars indicate significant (P<0.05) differences between climates in either calibration or 

validation period. 
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