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Manuscript hess-2017-147 entitled “Derived Optimal Linear 

Combination Evapotranspiration (DOLCE): a global gridded 

synthesis ET estimate” 

 
We would like to thank the reviewers for their constructive comments on our manuscript. This 5 

document outlines our point-by-point responses to the reviewer #1 comments and the improvements 

made to the manuscript. We’ve also added all the modified plots and tables at the end of this document. 

 

Response to Reviewer #1 

 10 

General comments 

 
1. There is obviously a question regarding the representativeness of the FLUXNET stations 

to their regions (grid box average or dominant surface conditions), which the paper 

addresses fairly well. However, one specific issue jumps out at me: what about rare 15 

representatives, particularly in the tropics? FLUXNET is woefully thin on stations at low 

latitudes. The out-of-sample tests are like an OSSE, but there is little sampling in the 

tropics to play with here. What was the specific effect of denying low-latitude stations? 

Can we use this study to make case to prioritize FLUXNET expansion into the tropics, 

S/SW Asia and the Southern Hemisphere? I would like to see this issue discussed more, 20 

where the global maps are presented and also in the Discussion. Motivating targeted 

FLUXNET network expansion would be a good "broader impact" of this study. 
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This is a great point. We have extended the discussion to try to address this:  

There are relatively few towers located in the Southern Hemisphere and the tropics (14 out of 

159 sites) and none located in the dry climates over South West Asia and North Africa. The 

weighting was therefore mostly driven by the ability of products to match sites located in the 

temperate and cold zones of the Northern Hemisphere, so that performance in climate zones 5 

with low FLUXNET site density was under-represented when deriving DOLCE. This might raise 

questions about the performance of DOLCE in the tropics and the Southern Hemisphere. To 

evaluate DOLCE in these areas we calculated the four site metrics separately for two groups of 

sites, 1) those located in the Northern Hemisphere excluding Tropics and 2) sites located in the 

Tropics and/or Southern Hemisphere. We excluded the two sites ID-Pag and AU-Fog in this 10 

exercise since both are wetland sites, and so would complicate a determination of whether these 

two groups had notable behavioural differences.  

If systematic behavioural differences did exist between these two groups, we would expect 

relatively poorer performance of DOLCE at group2 sites compared to group1 sites. The results, 

shown in Fig. 10, appear inconclusive. DOLCE performed marginally worse at group2 sites 15 

overall, however with the limited number of sites in group2, the validation of the performance of 

DOLCE in the tropics and Southern Hemisphere remains somewhat uncertain. The uneven 

distribution of eddy-covariance sites between the Northern and Southern Hemisphere and 

across the different climates might also explain why much of the largest seasonal differences 

DOLCE-MPI and DOLCE-LANDFLUX-EVAL shown in Fig. 6 and Fig. 7 reside in the low 20 

latitudes (tropics) and the Southern Hemisphere and the persistent differences between DOLCE 

and LANDFLUX-EVAL in the tropics throughout the year. The expansion of the FLUXNET 

network into these areas that are lacking observations is clearly something that would improve 

DOLCE and LSM evaluation more broadly. 

 25 

2. What about the uncertainty/error in the FLUXNET observations? They certainly contain 

random errors and systematic biases. For a measured quantity that has a red-noise 

spectrum (following a Markov process) the random error can be estimated from the 
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behavior of lagged autocorrelations (cf. http://dx.doi.org/10.1175/JHM-D-15-0196.1). 

Random error will systematically degrade correlation and affect other statistics (cf. 

http://dx.doi.org/10.1175/JHM-D-15-0063.1). Systematic error is more difficult to identify, 

but the energy balance corrections in FLUXNET2015 give some clue (see specific 

comments below). All these mean that using FLUXNET for cal/val is itself flawed and 5 

imperfect. On the other hand, model ET is inherently precise (no random error) and can 

be used to estimate/differentiate this type of error from others by noting its statistical 

differences from the instrument records. This issue should be acknowledged and discussed, 

including how the assumptions in DOLCE regarding errors (that they are uncorrelated) 

affect results. In other words, more discussion about uncertainties. 10 

Yes. We have extended the discussion to address this point, at least to some degree:  

Many studies have analysed the systematic and random errors of latent heat flux in FLUXNET 

measurements (Dirmeyer et al., 2016; Göckede et al., 2008; Richardson et al., 2006). These 

studies have detected errors of magnitudes that cannot be neglected. A recent study (Cheng et 

al., 2017) showed that the computed eddy-covariance fluxes have errors in the applied 15 

turbulence theory that lead to the underestimation of fluxes, and that this is likely to be one of 

the causes of the lack of surface energy closure. In this study, we 1) used the flag assigned to the 

observed flux, to filter out the low quality data and 2) used energy-balance-corrected FLUXNET 

data which has higher per-site mean values than the raw data at most of the sites (85% of them). 

We expect that filtering together with the use of corrected data will reduce the magnitude of the 20 

uncertainty in the observational data used here and compensate to a certain extent for the 

underestimation due to the systematic errors.  However, we have not formally explored a range 

of approaches to addressing this. The possibility of systematic biases in FLUXNET data 

remains, and this could clearly lead to systematic biases in DOLCE. 

We have also assumed that error across sites is uncorrelated, which, given the distribution of 25 

sites, is unlikely to be true, meaning that the effective number of sites is probably somewhat 

smaller than those shown in Figure 2. Given this dependence is likely to vary depending on a 
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range of time varying factors, we have left the job of attempting to disentangle this issue for 

future work. 

 

3. In the Supplement: There are captions for Fig S1 and Fig S2, but the PDF does not contain 

any figures!! Please recheck the rendering. 5 

We thank the reviewer for spotting this, we now added the missing Figures in the Supplement. 
 

Specific comments: 

 
4. P3 L6: Change "85 FLUXNET tower data" to "85 FLUXNET towers" 10 

We’ve corrected this in the manuscript. 

 

5. P3 L8: “ground-truthed” is not an appropriate verbification for this context. Change 

’...gridded ET data sets are “ground-truthed” using flux tower data from FLUXNET...’ to 

’...tower data from FLUXNET provide ground truth for gridded ET data sets...’ 15 

Thanks for picking this up, we’ve made the change. 

 

6. P5 L16: Change "where" to "were" 

Thanks for picking this up, we’ve corrected this in the manuscript. 

 20 

7. P7 L22: RSD cannot convey whether the variance is too large or too small. So for the 

changes shown in Fig 3b - we cannot tell whether the improvement is due to an increase or 

decrease in standard deviation. Furthermore, what about locations where mean ET 

(denominator) is near zero - does that explain some of the very large values and changes? 

The reviewer is right; as a result of this comment and a comment by Carlos Jimenez, we’ve 25 

replaced the relative standard deviation metric (RSD) with a modified relative standard 

deviation MRSD defined as σdataset or observation 
𝑚𝑚𝑚𝑚𝑚𝑚 (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑜𝑜𝑜𝑜𝑜𝑜𝑚𝑚𝑜𝑜𝑜𝑜𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑚𝑚),   𝑞𝑞). This addresses the two issues and removes 
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the potential for improvement in the RSD metric simply because the mean has improved. We 

have also added a fourth panel to this Figure showing improvement in the mean, for reference. 

We added the text below to explain the new metric:   

We use a modified relative standard deviation metric MRSD that measures the variability of 

latent heat flux relative to the mean of the flux measured at each site. This ensures that a 5 

comparison between MRSD for a product and observations can tell us whether a product’s 

variability is too large or too small (unlike relative standard deviation). The term ’q' is a 

threshold representing the 2nd  percentile of the distribution of observed mean flux (i.e. temporal 

mean ET) across all sites (about 13 W/m2), which guarantees that MRSD calculated across 

many sites is not dominated by sites where the mean flux (denominator in MRSD Equation 10 

above) approaches zero. We looked at the bias in MRSD for each product considered- i.e. 

|MRSDdataset - MRSDobservation|, and showed the performance improvement of the weighted mean. 

 

8. Fig 3: So the spread is across 5000, and each of those is an average of 25% out-of sample 

stations, right? It is not 5000x172x0.25 points. Please make clear.  15 

The reviewer is right. We now clarified this in the figure caption: 

9. Also, Fig 4 suggests individual o-o-s stations frequently fare worse. Transferability of 

calibrations appears to be kind of weak, which is not a surprise. Calibration transferability 

is a very difficult enterprise. This should also be acknowledged, either here or in the 

Discussion section (wishing PILPS-San Pedro had been completed as it would have really 20 

shone a light on this problem). 

Yes, this is indeed worth mentioning. We have modified the results section to read: 

In both cases it is important to note that many individual sites agree poorly with the weighted 

product compared to some other products. The distinction between the results shown in Fig. 3 

versus Fig. 4 serve to highlight that DOLCE, and indeed any other large scale gridded ET 25 



6 
 

product, is not suitable for estimation of an individual site’s fluxes, even if prediction over many 

sites shows notable improvement. 

 

10. P9 and Fig 4: "widespread out-of-sample improvement that this approach offers over 

existing gridded ET products" seems like a bit of an overstatement - there are frequently 5 

locations that fare worse, and sometimes much worse. In Fig 4, there is typically a 

tremendous range, and usually the central two quartiles encompass the zero line. For 

RMSE it appears that _20-49% of the time the estimates are worse than other products 

and methods, 30-55% for RSD, and 20-55% for COR. While there is definitely a net (and 

welcome) improvement in almost all cases, often the DOLCE estimate is worse. This 10 

should be acknowledged. 

This is indeed a fair criticism. We have modified this to read  

“On the basis of the aggregate out-of-sample improvement that this approach offers over 

existing gridded ET products”. 

 15 

11. P9 L26: "Standard Deviation (SD) difference" - this is clearly not the same as RSD defined 

earlier - please define, which minus which? 

The reviewer is right, this is not the same as RSD. We’ve clarified this in the manuscript: 

Standard Deviation (SD) difference (i.e. 𝜎𝜎𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 − 𝜎𝜎𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) 

 20 

12. Table 2 has little accompanying discussion, and what is there is very shallow adding little 

to comprehension. Please discuss more or remove the Table if it does not warrant 

discussion. 

We thank the reviewer for his suggestion, we removed this table from the manuscript. 

 25 

13. Fig 6: Here it could be said you use DOLCE to estimate MPI, and most places have a 

positive bias. But the energy-balance-corrected fluxnet data, which close the surface 

energy balance by construct conserving Bowen ratio, consistently increases ET compared 
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to the raw measurements (at 107 of 122 FLUXNET2015 Tier-1 stations during JJA by my 

quick calculation). There is recent independent indication that tower sites bias low because 

of errors in the turbulence theory applied to estimate fluxes (see: 

http://dx.doi.org/10.1002/2017GL073499). Could FLUXNET instrument error (and the 

simplicity of the energy closure correction) contribute to systematic biases in DOLCE? 5 

Please discuss here or in the Discussion section. 

Yes, of course it could. We have added to the discussion to make this clearer: 

Many studies have analysed the systematic and random errors of latent heat flux in FLUXNET 

measurements (Dirmeyer et al., 2016; Göckede et al., 2008; Richardson et al., 2006). These 

studies have detected errors of magnitudes that cannot be neglected. A recent study (Cheng et 10 

al., 2017) showed that the computed eddy-covariance fluxes have errors in the applied 

turbulence theory that lead to the underestimation of fluxes, and that this is likely to be one of 

the causes of the lack of surface energy closure. In this study, we 1) used the flag assigned to the 

observed flux, to filter out the low quality data and 2) used energy-balance-corrected FLUXNET 

data which has higher per-site mean values than the raw data at most of the sites (85% of them). 15 

We expect that filtering together with the use of corrected data will reduce the magnitude of the 

uncertainty in the observational data used here and compensate to a certain extent for the 

underestimation due to the systematic errors.  However, we have not formally explored a range 

of approaches to addressing this. The possibility of systematic biases in FLUXNET data 

remains, and this could clearly lead to systematic biases in DOLCE. 20 

We have also assumed that error across sites is uncorrelated, which, given the distribution of 

sites, is unlikely to be true, meaning that the effective number of sites is probably somewhat 

smaller than those shown in Fig. 2. Given this dependence is likely to vary depending on a range 

of time varying factors, we have left the job of attempting to disentangle this issue for future 

work. 25 

 

14. Re Fig 7: Much of the largest differences are at low latitudes where there is little 

FLUXNET data for calibration. Please discuss, as I see this as a major issue (more with 
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FLUXNET station distribution than your methods, but the problem of representative ET 

estimates in the tropics is an ongoing concern). 

We have addressed this issue in our response to the first point raised above. 

 

15. P10 L21: "ET doesn’t exhibit any seasonal change over Greenland and the deserts in 5 

North Africa..." - not expected in the absolute, because mean values are tiny. It would be 

more informative to also show relative (percentage) changes, which are more relevant for 

local water balances. 

A good point. We have now added two extra plot in Fig.8 that show the seasonal variability of 

1) ET estimates and 2) uncertainty estimates, we changed the plot titles, made the caption 10 

clearer: 

 and commented on the plots in the text: 

 

The spatial distribution of DOLCE mean ET and its seasonal variability (standard deviation) 

over the austral Summer (Dec–Feb) and Winter (Jun–Aug) from 2000 to 2009 is shown in Fig. 8 15 

(a) and (b) respectively. The seasonal variability of ET is larger in the warm season but is 

always small over Antarctica, Greenland and the deserts in North Africa (Sahara), the middle 

east (Arabian Peninsula desert) and Asia (i.e. Gobi, Takla Makan and Thar). The average 

uncertainty shown in if Fig. 8 (c) is bigger in the warm season, this is in agreement with the 

relatively large size of the flux in the warm season, and its seasonal variability shown in Fig. 8 20 

(d) is also in agreement with the seasonal variability of the flux. 

 

16. Discussion §: Please also speculate whether some spatial variability in weighting could 

improve estimates further, even if only in 2 or 3 categories of weights. 

We agree this is worth exploring. That’s why we performed clustered weighting where each 25 

cluster had a different set of weights. We accept this might not have been clear enough in the 

manuscript, we clarified this in the discussion: 
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In this study, we sought a single weight for each product to apply globally. But we have a reason 

to believe that different products are likely to perform better in different environments, so that 

different weights in different climatic circumstances might well improve the result of weighting 

overall. A similar suggestion was made in the studies of (Ershadi et al., 2014) and (Michel et al., 

2016) who highlighted the need to develop a composite model, where individual models are 5 

assigned weights based on their performance across particular biome types and climate zones. 

We therefore tried to cluster flux tower sites into groups (such as vegetation type) so that each 

group maintains enough members to allow the in- and out-of-sample testing approach used 

above. We tried clustering by vegetation type, climate zone and aridity index, and implemented 

the same one site out-of-sample testing approach as above, but this time, in each cluster 10 

different sets of weights will be assigned to the weighting products. 

 

17. Fig 9: Only stations in the tropics are 2 EBF stations; the savannah stations are in 

southern Africa. These are not o-o-s results, right? I would have expected these types to 

stand out more, but perhaps the samples are biased to the extratropical stations in the 15 

categories. Thoughts? 

We have added this point to the discussion: 

The EBF box and whisker plot in Fig. 9 (d) shows the correlation of DOLCE at eight EBF sites, 

out of which two sites are located in the tropics. The lowest correlation seen in this biome type is 

at the tropical sites ID-Pag (0.26) and BR-Sa3 (0.62). This suggests that DOLCE tends to 20 

represent ET at the extratropical sites better than the tropics, and this is not surprising since 

most of the sites that were used to calibrate DOLCE were extratropical sites. 

 

18. Also Fig 9: Crops are tricky. The category is a catchall that is unsatisfactory because there 

is such variability in phenology, seasonality, stomatal resistances, etc. Are any of the CRO 25 

stations rice (which acts very different because of seasonal flooding). Not surprising many 

of the biggest errors are there. 
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Good point. In the site description provided by FLUXNET the crop type is not always clear. 

There is only one rice site that we are sure about, but we excluded this site from the weighting 

because it was found in the list of irrigated sites. We excluded all irrigated sites. We’ve added 

the text below to explain the reasons: 

In (6), we expect that some of the weighting models will largely underestimate the flux at 5 

irrigated sites, a result of a missing irrigation module in their scheme (Miralles, 2011; Jung, 

2011). Because of this, the error bias of these models at the irrigated sites will modify the mean 

error bias (i.e. mean bias across all the sites) significantly, which will affect the weighting in 

favour of the products that can represent better irrigation. We excluded these sites as we do not 

want the products to be weighted for their inclusion/non-inclusion of physical processes. 10 

 

We expanded our analysis as suggested by reviewer #2 point 10 to test the performance of 

DOLCE in three irrigated sites, we’ve added the text below to show this: 

We tested the performance of DOLCE at three irrigated sites that were excluded from the 

weighting, for reasons explained earlier by computing the four statistics. A description of these 15 

sites and the results are shown in Table 2. The results show that the performance of DOLCE is 

reasonable at US-Ne1 and US-Ne2 and low at US-Twt. These results are discussed further 

below. 

DOLCE has also shown a weak performance at US-Twt, which is an irrigated rice paddy. This 

site gets flooded in spring and drains in early fall, then the rice is harvested. Only 9 months 20 

were available for this site, which coincide with the flood and drain period between spring and 

fall. DOLCE could not depict the flooding and draining event, probably because none of the 

weighting products can represent such phenomena, so it is expected that the effects of seasonal 

flooding are not represented in DOLCE. 

 25 

19. P13 L1: "...for example anthropogenic water management..." - but it was stated earlier 

that irrigated sites were excluded. Please expand on this comment. 

We addressed this concern in the previous point.  
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20. Conclusion: Please also state plans for updates, future versions, perhaps (hopefully) 

covering a longer time period!? 

We thank the reviewer for his suggestion. We have added future improvement of DOLCE in the 

conclusion. 5 

 

21. References: There seem to be a lot of redundancies in author lists for papers with names 

showing up 2 or 3 times for the same entry. Please check. 

Thanks for picking this up, we have now removed the redundancies and made the appropriate 

corrections. 10 

Tables 

Table1: Gridded ET products used in this paper. 

ET product and 

Reference 

Abbrev

iation 

Time period 

& Spatial 

Resolution 

Forcing data source Calculation Method(s)  

CSIRO-global 

(Zhang et al., 

2010a) 

CS 1983–2006 

0.5° 

Also 

available at 

8km and 1° 

Meteorological observations 

from flux tower distributed 

across all global biome 

types  

Remote sensing inputs 

An extended ET product of 

CSIRO  (Zhang et al., 2010b) 

that covers a global domain 

NDVI-based PM model 

PT equation for open water 

evaporation 

GLEAM-V2A 

(Miralles et al., 

2011) 

G2A 1980–2011 

0.25° 

Remote sensing based 

observations 

Gauged based precipitation 

PT equation 

Canopy Interception Model, Soil 

water module and Stress module 

GLEAM-V2B 

(Miralles et al., 

2011) 

G2B 2000–2011 

0.25° 

Remote sensing based 

observations 

 

PT equation 

Canopy Interception Module, 

Soil water module and Stress 

module 

GLEAM-V3A G3A 1980–2014 Satellite based inputs  A revised version of GLEAM 
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(Martens et al., 

2016) 

0.25° Multi-source precipitation 

 

V2A in which new satellite-

observed geophysical variables 

have been incorporated and the 

representation of the surface 

soil moisture and evaporation 

has been improved 

LandFlux-Eval-

Diag 

(Mueller et al., 

2011, 2013) 

LFD 1989–2005 

1° 

Simple mean of 5 diagnostic ET datasets 

LandFlux-Eval-All 

(Mueller et al., 

2011, 2013) 

LFA Simple mean of 14 Diagnostic, LSM and Reanalysis datasets. 

MOD16 

MODIS global ET 

products 

(Mu et al., 2011) 

MOD 2000–2014 

0.5° also 

available at 

0.0 5° 

Global Modeling and 

Assimilation Office (GMAO) 

meteorological reanalysis 

data  

Remote sensing inputs from 

MODIS 8-day retrievals 

PM formula (Monteith J. L., 

1965) 

MPIBGC 

(Jung et al., 2011) 

MPI 1982–2011 

0.5° 

FLUXNET data from 253 

sites 

Remote sensing datasets 

from (SeaWiFS) 

Empirical methods: a Model 

Tree Ensemble (MTE) Machine 

learning techniques 

PML 

PM-Leuning model 

(Zhang et al., 2015) 

PML 1981–2012 

0.5° 

GMAO Reanalysis products PM Leuning method 

PT–JPL 

(Fisher et al., 2008) 

PT 1984–2006 

1° 

Meteorological reanalysis 

data from ISLSCP –II 

Remote sensing based 

observations from monthly 

AVHRR data 

PT equation 
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Table 2: Four metrics (RMSE, Mean bias, SD difference and Correlation) of DOLCE at three irrigated sites, and the number of 
available monthly records for each site. 

Site-Code Longitude Latitude Description RMSE Mean bias SD 

difference 

Correlation Number 

of 

months 

US-Ne1 -96.4766 41.1651 Rice paddy 16.6 -7.41 -9.25 0.96 103 

US-Ne2 -96.4701 41.1649 Mead 

irrigated 

continuous 

maize site 

15.8 -5.05 -7.44 0.95 103 

US-Twt -121.6521 38.1055 Mead 

irrigated 

maize-

soybean 

rotation site 

91.9 -67.39 -55.23 0.49 9 

 

Table S2: Distribution by land cover of HOM-case sites and HET-case sites at both the site scale and grid cell scale 

Land Cover HOM-case HET-case (site) HET-case (grid cell) 

CRO 10  7 20 

CSH 0 1 0 

DBF 1 16 0 

EBF 3 5 0 

ENF 6 22 2 

GRA 13 27 5 

MF 7 3 32 

OSH 2 1 4 

SAV 3 1 6 

VEG 1  0 

WET  5 0 

WSA  4 9 

Wa (Water)   1 

URB (Urban)   1 

 5 
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Figures 

 

Figure 3: Box and whisker plots displaying the percentage improvement that the weighted product provides in the 25% out-of-sample 
sites test for four metrics: MSE (a), MRSD (b), COR (c) and Mean bias (d), when compared to equally weighted mean of the 
Diagnostic Ensemble (Dmean), aggregated Reference Ensemble (Ragg) and each member of the reference ensemble. Box and whisker 5 
plots represents 5000 entries, each entry is generated through randomly selecting 25% of sites to be out sample.  
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Figure 4: In (a), (b), (c) and (d), as for Fig. 3 but showing the one site out-of-sample tests. Box and whisker plots are generated 
through selecting one site to be out sample and are repeated for all 138 sites. Products marked with * have limited spatiotemporal 
availability relative to the diagnostic ensemble, and testing against the LFA, LFD, CS and PT products was limited to 110, 108, 108 
and 72 sites respectively. In (e), (f), (g) and (h), the one out-of-sample test is trained by HOM-case sites data only. 5 
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Figure 8: Seasonal (a) global mean ET and (b) its variability (standard deviation), (c) time average of uncertainty (the standard 
deviation uncertainty shown in Equation 7) (d) standard deviation of uncertainty over time (e) reliability, defined as high 
(𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼 𝑺𝑺𝑺𝑺

𝒎𝒎𝑼𝑼𝑼𝑼𝑼𝑼 𝑬𝑬𝑬𝑬
≤ 𝟏𝟏 in blue), medium(|𝒎𝒎𝑼𝑼𝑼𝑼𝑼𝑼 𝑬𝑬𝑬𝑬| ≤ 𝟓𝟓, 𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼 𝑺𝑺𝑺𝑺 < 𝟏𝟏𝟏𝟏 and 𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼 𝑺𝑺𝑺𝑺

𝒎𝒎𝑼𝑼𝑼𝑼𝑼𝑼 𝑬𝑬𝑬𝑬
≥ 𝟏𝟏 in green) and low (in red). DJF 

is shown in the left column and JJA in the right column. 5 



17 
 

 

Figure 9: Four statistics, (a) RMSE, (b) Mean bias, (c) SD difference and (d) Correlation, calculated for DOLCE at 142 flux tower 
sites and displayed by biome types. See Fig. 2 for biome abbreviations. 
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Figure 10: Four statistics, (a) RMSE, (b) Mean bias, (c) SD  difference and (d) Correlation, calculated for DOLCE separately at 129 
flux towers located at the Northern Hemisphere excluding the tropics (NH) and at 11 towers in the Southern Hemisphere and the 
tropics (SH & TROPICS) 
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Figure 11: Box and whisker plots displaying the percentage improvement that the weighted product excluding MPIBGC provides in the 
25% out-of-sample sites test for four metrics: MSE (a), MRSD (b), COR (c) and Mean Bias (d), when compared to equally weighted 
mean (Dmean) of the Diagnostic Ensemble, aggregated Reference Ensemble (Ragg) and each member of the reference ensemble. Box 
and whisker plots represents 5000 entries, each entry is generated through randomly selecting 25% of sites to be out sample 5 
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Figure 12: Box and whisker plots displaying the percentage improvement that the weighted product excluding MPIBGC provides in the 
one out-of-sample sites test for four metrics: MSE (a), MRSD (b), COR (c) and Mean Bias (d), when compared to equally weighted 
mean (Dmean) of the Diagnostic Ensemble, aggregated Reference Ensemble (Ragg) and each member of the reference ensemble. 
Products marked with * have limited spatiotemporal availability relative to the diagnostic ensemble, and testing against the LFA, LFD, 5 
CS and PT products was limited to 110, 108, 108 and 72 sites respectively. 
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Figure S1: The results of the in-sample test showing how the Mean Square Error (MSE) of the weighting changes when we increase 
the number of ET products involved in the weighting from 1 to 6. The test was repeated 25 times of a random selection of n products (2 
≤ n ≤ 6). 5 
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Figure S2: Box and whisker plots displaying the results of the One out-of-sample site test for the cluster independent weighting (No CL 
and No CL Agg boxplots), the cluster dependent weighting (Cl-5 and CL-5 Agg) and over individual biome types for four metrics: MSE 
(a), MRSD (b), COR (c) and Mean Bias (d). 

 5 
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