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Abstract. Data retrieved from global weather forecast systems are typically biased with respect to measurements at local 6 

weather stations. This paper presents three copula-based methods for bias correction of daily air temperature data derived from 7 

the European Centre for Medium-range Weather Forecasts (ECMWF). The aim of these methods The aim is to predict 8 

conditional copula quantiles at different unvisited locations, accounting for the temporal variability of copula’s parameter and 9 

assuming spatial stationarity of the underlying random field. The three new methods are: bivariate copula quantile mapping 10 

(types BCQM-I and BCQM-II), and a quantile search (QS). In the BCQM methods, quantile mapping is performed between 11 

two bivariate copulas. The difference between BCQM-I and BCQM-II is the choice for a particular covariate. The QS method 12 

allows one to generate a random variable and to re-estimate the bivariate copula minimizing the error between the true marginal 13 

quantile and the marginal quantile estimated by the BCQM methods. These are compared with commonly applied methods, 14 

using eleven years data from an agricultural area in the Qazvin Plain in Iran. This area contains containing five eight weather 15 

stations. Cross-validation is carried out to assess the performance of the new methods. The study shows that the new 16 

methodsthese are able to predict the conditional quantiles at unvisited locations, improve the higher order moments of marginal 17 

distributions, and take the spatial variabilities of the bias-corrected variable into account. The studyIt further illustrates how a 18 

choice of the bias correction method affects the bias-corrected variable and highlights both theoretical and practical issues of 19 

the methods like how they affect the bias corrected variable. We conclude that the three new methods improve local refinement 20 

of weather data, in particular if a low number of observations is available. 21 

1 Introduction 22 

Weather stations are often sparse and usually located at irregular positions. If their data are used for crop growth simulations, 23 

then their results at unvisited locations are likely to be uncertain. A solution to this problem is to use weather data from a 24 

weather forecast system at each those locations. A modern and reliable weather forecast system is commonly composed of 25 

dynamical models, data assimilation methods and a product delivery system (Persson 2013). The coarse resolution of models, 26 

mutual dependence of weather parameters, and variability of these parameters in space and time are major sources of 27 

uncertainties in a weather forecasts, however, result in system uncertainties of the obtained weather data (Dee et al. 2011; 28 
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Durai and Bhradwaj 2014). The uncertainties  Uncertainties propagate as they if those are further applied, e.g. in hydrological 1 

models that increasingly use such data as input. This requires Hence, the data have to be corrected before being used.  2 

Bias is defined as the systematic underestimation or overestimation of a global weather forecast system with respect to local 3 

measurements from weather stations (Persson 2013; Mao et al. 2015). Due to the coarse spatial resolution of ECMWF weather 4 

forecasted gridded data, there is an apparent mismatch between measurements obtained from weather stations and weather 5 

forecast data. In the this study area, however, unvisited locations are many grid points which do not contain an observation 6 

due to the relatively low number of weather stations in the study area. In order to obtain unbiased values, a bias correction 7 

method should be applied for these grid points before using the weather forecast data. 8 

Various bias correction methods have been proposed in the literature: linear-scaling factor methods (Lenderink et al. 2007), 9 

nonlinear methods (Lafon et al. 2013), and quantile mapping methods (Ines and Hansen 2006). Although These 10 

methodsquantile mapping methods are able to correct for bias in the mean and standard deviation, but they do not considernone 11 

of them can robustly correct other moments of a probability distribution (Lafon et al. 2013). Currently, the bivariate Gamma 12 

and empirical distributions are specifically used for bias correction of precipitation data (Lafon et al. 2013; Kum et al. 2014) 13 

and the Gaussian distribution for bias correction of temperature data (Teutschbein and Seibert 2012). A limitation of this 14 

approach is that the same distributions families are used to estimate both the marginal and the multivariate distributions (Genest 15 

and Favre 2007). For this reason, we turn to copulas.  16 

A copula joins a multivariate distribution to its univariate marginals, based upon Sklar’s theorem (Sklar 1973; Nelsen 2006). 17 

Copulas describe the complex dependence structure between variables independently from the marginal distributions (Gräler 18 

and Pebesma 2011). Recently, copula-based methods have been developed for deriving bias-corrected weather data (Mao et 19 

al. 2015). Here,In copula-based  amethods, a conditional distribution describes the dependence structure between weather 20 

forecast data and measurements at weather stations. Their estimated quantiles are transformed into bias-corrected weather data.  21 

A bias correction method proposed by Laux et al. (2011) employed a bivariate conditional copulas distribution for to model 22 

dependence between the daily precipitation time series retrieved from a regional climate model and observations at three 23 

locations where data is available. In their method, however, a bivariate copula is fitted to daily time series at one location, 24 

ignoring the temporal variability of copula parameter as well as spatial dependency. In addition, the fitting is required to 25 

remove autocorrelation and heteroscedasticity which may exist in the time series (Laux et al. 2011). Mao et al. (2015) 26 

investigated daily precipitation data and showed that a copula-based bias correction performs better than quantile mapping. 27 

Vogl et al. (2012) proposed the “Multiple Theta” and the “Maximum Theta” approaches for bias correction of rainfall data.  28 

So far, copulas have mainly been applied to precipitation time series retrieved from regional climate models. Observed weather 29 

data, in contrast, are provided at various temporal resolutions, whereas bias correction is often assumed to be temporally 30 

stationary. This means that they are also valid for future conditions (Teutschbein and Seibert 2012). In addition, in the copula-31 

based methods, conditional quantiles are generated by Monte Carlo simulations and the mean value of the simulations is 32 

considered as one solution for the bias-corrected value at an unvisited location (Laux et al. 2011; Vogl et al. 2012; Mao et al. 33 

2015). The drawback of this procedure is further explained in Sect. 2.3.4.  34 
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This paper presents three new methods based on the copulas concept: bivariate copula quantile mapping (types I and II), and 1 

quantile search. In this study, we aim for:. The new methods allow for  2 

- estimating different conditional quantiles at different all unvisited locations accounting for the temporal variability of 3 

the dependence structure. for each time step of a time series. Another aim is to  4 

- evaluatinge these methodsthe ability of these methods to predict the spatial variability of the bias-corrected daily air 5 

temperature at unvisited locations. In addition, this paper  6 

- comparinges the proposed methods with available bias correction methods:, which are marginal quantile mapping, 7 

expectation predictor and single quantile predictor. The expectation and single quantile predictors are based on the 8 

bivariate conditional copula. The aim is to  9 

- providinge a review and application of these methods for bias correction of the daily air temperature data whenif a 10 

relatively low number of observations are available.  11 

The structure of this paper is as follows. The concept of copulas and the methods of bias correction are presented in Sect. 2. 12 

The study area and data are introduced in Sect. 3. The results of bias correction methods for the study area are described in 13 

Section 4, followed by the discussion and conclusion in Sect. 5 and Sect. 6.  14 

2 Method 15 

2.1 Copulas  16 

A copula is a multivariate cumulative distribution function that describes the dependence structure between variables. This 17 

function is unique if the marginals are continuous functions (Nelsen 2006; Vogl et al. 2012). According to Sklar’s theorem, 18 

the joint multivariate bivariate distribution H of m two variables Zi equals a copula C of m  two variables ui Ui as:  19 

𝐻(𝑧1, … , 𝑧𝑚2) = 𝐶(𝑢1, … , 𝑢𝑚2),.           (1) 20 

𝑢𝑖 = 𝐹𝑖(𝑧𝑖),         𝑢𝑖  ∈ [0,1],.           (2) 21 

where 𝐹𝑖 is the marginal distribution function. A bivariate copula can describes several dependence structures: the spatial 22 

dependence structure between two variables at two different locations in space or at two different points in time; the spatio-23 

temporal dependence structure between two variables at different points in time and space; the dependence structure between 24 

two variables at one point in time and space. A bivariate conditional copula  𝐶𝑢2
𝑡 (𝑢1) is often used to correct for bias by 25 

describing the dependence structure between two variables at one point in time and space, where u1 U1 is treated as “true” 26 

variable and u2 U2 is biased variable. Several copula families have been developed to capture multivariate joint distributions 27 

such as the Gaussian, the Student’s t, the Clayton, the Gumbel and the Frank families (Nelsen 20062003; Joe 1993). These 28 

families mainly differ in the way the tail dependence structure is described (Table 1) (Joe 1993; Manner 2007). 29 
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2.2 Copula-based bias correction method 1 

The bias at time a single moment t in time and location s in space is defined as the difference between the measurements from 2 

weather stations denoted by𝑧1
𝑡,𝑠 𝑍1, and weather forecasts denoted by 𝑧2

𝑡,𝑠𝑍2:  3 

𝑍1𝑧1
𝑡,𝑠 = 𝑧2

𝑡,𝑠𝑍2 + 𝐵𝑖𝑎𝑠𝑡,𝑠𝐵𝑖𝑎𝑠.          (3) 4 

The value of the bias is predicted indirectly in copula-based bias correction methods. A bivariate conditional copula 5 

𝐶𝑢2
 𝐶𝑢2

𝑡 (𝑢1) for two variables at one point in space and time, denoted by 𝑍1 and 𝑍2, is defined as (Nelsen 2006; Gräler 2014):  6 

𝑃(𝑍1 ≤ 𝑧1|𝑍2 = 𝑧2) = 𝐶𝑢2
(𝑢1) 𝐶𝑢2

𝑡 (𝑢1) = 𝐶𝑡𝐶(𝑢𝑈1 ≤ 𝑢1|𝑈2 = 𝑢2) =
𝜕 ∁𝑡𝐶(𝑢𝑈1,𝑢𝑈2)

𝜕𝑢𝑈2
= 𝑝𝑢1|𝑢2

, 𝐶: [0,1]2 → [0,1],. (4) 7 

where 𝑢1 and 𝑢2 are empirical marginal quantiles. Throughout, the functions copulas  and variable vary over space and time; 8 

s refers to a location and t refers to single moment in time. We assumed spatial stationarity during each moment in time to 9 

estimate 𝐶𝑢2
(𝑢1) 𝐶𝑡 . This assumption is justified as the dependence structure between the observed and the forecasted 10 

variables is studied in a relatively small area and the dependence structures are thus unlikely to change spatially in a non-11 

stationary way.   12 

Empirical marginal distributions quantiles 𝑢1 and 𝑢2 are obtained using the following rank-order-transformation: 13 

𝑢𝑖 =
rank(𝑍𝑧𝑖)

𝑘+1
,. (i = 1, 2),           (5) 14 

where k denotes the number of available data for 𝑍𝑖. We denote the transformed variables by 𝑢𝑈1 and 𝑢𝑈2 for the conditioned 15 

and conditioning variables, which are discrete and now approximately uniformly distributed on [0, 1]. Extreme values that 16 

possibly exist in the observations, however, are smoothed and hence the extreme values cannot occur are prevented from 17 

occurring at unvisited locations after this transformation. To solve for this problem and to obtain a better approximation of the 18 

marginal distribution function at unvisited locations, a polynomial spline is fitted to the pairs (𝑧1, 𝑢1). Yet, this approach is 19 

also prone to uncertainty because the polynomial is fitted to a low number of observed values. 20 

To further proceed, a bivariate copula is fitted to the marginal quantiles u1 and u2 at weather stations for each time step. We 21 

use the Student’s t (Demarta and McNeil 2005), Gaussian, the Clayton, the Gumbel and the Frank families (Joe 1993), as these 22 

families are sufficiently flexible to capture the dependence structures of the conditioned and conditioning variables pairs (u1, 23 

u2). Note that a bivariate copula has one parameter, except for the Student’s t family that has two parameters: one for the 24 

correlation and one for the degrees of freedom (Table 1). To estimate the parameters for each family, we apply maximum 25 

likelihood estimation (Gräler 2014), using starting values obtained by Kendall’s , being a measure of association between 26 

variables (Nelsen 2006). Based upon their results, the most suitable family is selected according to Akaike’s Information 27 

Criteria (AIC) (Akaike 1974). 28 

In the literature, several goodness-of-fit tests exist and a good review is provided by Genest et al., 2009. In this paper, except 29 

for Student’s t copulas, goodness-of-fit is tested based on a new Cramér–von Mises statistic 𝑆𝑛
(𝐵)

 proposed by Genest et al., 30 

2009. The 𝑆𝑛
(𝐵)

 is based on Rosenbalt’s transform and recommended for best perfomance and consistensy among other tests 31 

(Genest et al., 2009). It has practical limitations to implement it for Student’s t copulas. For Student’s t copulas, goodness-of-32 
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fit is tested based on a the White statistic 𝑆𝑤 (Huang and Prokhorov, 2014). It may be instable in estimation of degree of 1 

freedom (Schepsmeier, 2016). 2 

In copula-based bias correction methods, when the conditional quantile 𝑝𝑢1|𝑢2
𝑝𝑢1

 in Eq. (4) needs to beis predicted, it is used 3 

to derive the marginal quantile 𝑢̂1 as well as the realization of the random variable  𝑍̂1 . The solution depends upon the 4 

application, i.e. 𝑍̂1 has to be predicted at the unvisited location in space, at the unobserved period in time or both. Incorporating 5 

temporal/spatial information or spatio-temporal information of available data to predict the conditional quantile then likely 6 

affects selection of a suitable method. 7 

2.3 Realization of random variable 𝒁̂𝟏 8 

The purpose of the bias correction method is to predict the bias-corrected values 𝑧̂1  at unvisited locations. This section 9 

describes briefly available methods to obtain the realizations of the bias-corrected variable 𝑍̂1 which are quantile mapping, 10 

expectation predictor, marginal transformation based on a single quantile, and simulation of conditional quantile. In addition, 11 

the newly developed methods are explained and compareds them to the quantile mapping and expectation predictor three 12 

newly developed methods. We utilized the concept of bivariate conditional copula to develop new methods for bias correction, 13 

as bivariate copulas are well understood and easy to estimate. The flexibility in the determining of the conditional quantiles 14 

makes the newly developed methods appealing for spatial variabilities at unvisited locations when low number of observations 15 

are available. The combination of covariates in a Vine copula (Aas et al., 2009) might improve the bias correction, but is out 16 

of scope of this paper.   17 

2.3.1 Marginal qQuantile mapping 18 

A comprehensive study carried out by Teutschbein and Seibert (2012) showed that the quantile mapping (QM) method 19 

performs best among the classical bias correction methods and it can easily be implemented. It can reduce bias in the first two 20 

moments of a probability distribution. It is, however, sensitive to the number of quantile divisions when using an empirical 21 

probability distribution. For this method, several names can be found in the literature, such as probability mapping, CDF 22 

matching, quantile-quantile mapping. Here, we call this method as marginal quantile mapping (MQM) to specify the type of 23 

cumulative distribution function in the mapping and compare it to the copula-based bias correction methods. In QM the 24 

marginal quantile mapping, a single value 𝑧̂1as a realization of the random variable 𝑍̂1 is obtained as: 25 

𝑧̂1 = (𝐹1
𝑡)−1(𝐹2

𝑡(𝑧2)),.            (6) 26 

where 𝐹1  and 𝐹2  are marginal distribution function of the measurements from weather stations and weather forecasts, 27 

respectively. The marginal distribution functions are spatially stationary during each moment t in time. The idea of MQM is 28 

that there is a perfect dependence between variables 𝑢𝑈1 and 𝑢𝑈2. This underlying assumption, however, is hard to be fulfilled, 29 

due to the complexity of the dependence structure between measurements and forecasted data. 30 
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2.3.2 Expectation predictor  1 

The conditional expectation is the optimal predictor, in the sense that it minimize the Bayes risk (Cressie 1993). It can be either 2 

linear or nonlinear in 𝑍1. A single value 𝑧̂1(𝑚𝑒𝑎𝑛) as a realization of the random biased-corrected variable 𝑍̂1 𝑍̂1
𝑡,𝑠

 is obtained 3 

using the conditional expectation (Bárdossy and Li 2008): 4 

𝑧̂1(𝑚𝑒𝑎𝑛) = 𝐸[𝑧1| 𝑧2] = ∫ 𝑍1. 𝑓𝑡(𝑍1 ≤ 𝑧1|𝑍2 = 𝑧2)(𝑍1|𝑍2)𝑑𝑍1𝑧1
= ∫ (𝐹1

𝑡)−1(𝑢𝑈1). 𝑐𝑡𝑐(𝑢𝑈1 ≤ 𝑢1|𝑢𝑈2 = 𝑢2)𝑑𝑢𝑈1
1

0
,.(7) 5 

Wherewhere 𝑧̂1(𝑚𝑒𝑎𝑛)  is the mean value of the variable 𝑍̂1 , 𝐸[|]  is conditional expectation operator,  𝑍1  and 𝑍2  are 6 

measurements and forecasted variables, respectively, 𝑢1  and 𝑢2  are marginal quantiles of the variables 𝑍1  and 𝑍2 , 𝐹1  is 7 

marginal distribution function of the measurements from weather stations, and 𝑐𝑡𝑐 is the conditional copula density function. 8 

The marginal distribution functions and copulas are spatially stationary during each moment t in time. In the case of 9 

constructing bivariate copulas, it can be shown that (see Appendix 1):  10 

 𝑐𝑡𝑐(𝑈1 ≤ 𝑢1|𝑈2 = 𝑢2)(𝑢1|𝑢2) = 𝑐𝑡𝑐(𝑢1, 𝑢2) =
𝜕2∁𝑡𝐶(𝑢𝑈1,𝑢𝑈2)

𝜕𝑢𝑈1𝜕𝑢𝑈2
.       (8) 11 

The expectation predictor (EP) is mostly used for copulas to predict the value at an unvisited location in space (Bárdossy and 12 

Li 2008) or to predict the value at an unvisited location in space and time (Gräler and Pebesma 2011) using a large number of 13 

observations. In copula-based bias correction methods, however, spatial variability around unvisited locations faces the 14 

smoothing effect of EP. Another drawback concerns the empirical marginal quantiles of the bias-corrected variable 𝑢̂1. The 15 

conditional expectation is either an increasing or a decreasing function of the conditioning variable if the dependence is positive 16 

or negative, respectively. Therefore, after applying EP, the empirical marginal quantiles of the bias-corrected variable 𝑢̂1 17 

equals the empirical marginal quantiles of the forecasted variable 𝑢2 or 1 − 𝑢2 (see Appendix 2).  18 

2.3.3 Marginal transformation based on a single quantile  19 

The conditional quantile 𝑝𝑢1|𝑢2
𝑝𝑢1

 in the Eq. (4) specifies that the conditioned variable  𝑍1 takes a value for a given 20 

conditioning variable 𝑍2. To apply the marginal transformation based on a single quantile method, first, the same quantile 21 

𝑝𝑢1
for all locations is used to derive the marginal quantile 𝑢̂1, by applying the inverse transformation of the copula (𝐶𝑡)−1:  22 

𝑢̂1 = (𝐶𝑡)−1(𝑝𝑢1|𝑢2
𝑝𝑢1

|𝑈2 = 𝑢2).,            (9) 23 

where 𝑢̂1 is the predicted marginal quantiles for the bias-corrected variable 𝑍̂1, 𝐶 is the conditional copula which is spatially 24 

stationary during each moment t in time, and 𝑢2 is marginal quantile of the variable 𝑍2.  Then the realization of the biased-25 

corrected random variable 𝑍̂1 is obtained by applying the inverse transformation of its marginal distribution (𝐹1
𝑡)−1 (Nelsen 26 

2006):   27 

𝑧̂1 = (𝐹1
𝑡)−1(𝑢̂1),.              (10) 28 

where 𝑧̂1 is a single value of the variable 𝑍̂1, and 𝐹1 is marginal distribution function of the measurements from weather 29 

stations. As the full conditional distribution of variable of interest is derived, any quantiles 𝑝𝑢1|𝑢2
𝑝𝑢1

 can be used for instance, 30 
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the median value of 𝑍̂1 can be obtained when the quantile 𝑝𝑢1|𝑢2
𝑝𝑢1

 is 0.5 for all locations. In this method, the question can be 1 

posed which quantile 𝑝𝑢1|𝑢2
𝑝𝑢1

best suits for the corrected variable at unvisited locations.  2 

2.3.4 Simulation of conditional quantile  3 

Copula-based bias correction methods are used to obtain the conditional quantiles in order to predict the bias-corrected values 4 

at unvisited locations. Simulation of conditional quantiles is one procedure to obtain conditional quantiles. In the simulation 5 

of conditional quantiles, realizations of the random variable  𝑍̂1 are obtained by generating independent variates 𝑢2  and 6 

𝑝𝑢1|𝑢2
𝑝𝑢1

 uniform on [0,1]2 (Salvadori et al. 2007; Nelsen 2006).  These variates are used in Eq. (9) to obtain samples 𝑢̂1. 7 

These samples are transformed to obtain realizations of the random variable 𝑍̂1 by applying the inverse transformation of the 8 

marginal distribution in Eq. (10). The number of samples in the simulations, however, influences the simulation of conditional 9 

quantiles. HereIn the simulation procedure, to obtain a single value for air temperature, a choice for either the mean, or the 10 

median or the mode of a simulation provides a single value 𝑧̂1 as a realizations of the random variable 𝑍̂1. In the literature, the 11 

mean value of the simulations is considered as a single realization (Laux et al. 2011; Vogl et al. 2012). The number of samples 12 

in the simulations, however, influences the simulation of conditional quantiles. When choosing large number of the samples 13 

in the simulation and one chooses The either the mean and or the median of the simulations as a single value, the mean or 14 

median are equal to the mean and the medianvalue as derived from the conditional copulas using expectation predictor methods 15 

explained in Sect. 2.3.2 and or the median value as derived using median predictor explained in Sect. 2.3.3 when choosing 16 

large number of the samples in the simulation (Mao et al. 2015).  17 

2.3.5 Bivariate copula quantile mapping  18 

This section introduces new bias correction methods (BCQM-I and BCQM-II) including a covariate to consider the spatial 19 

structure of the air temperature at unvisited locations. The bivariate copula quantile mapping (BCQM) is a two dimensional 20 

quantile mapping method and relies on two bivariate copulas incorporating the dependence of the covariate and the air 21 

temperature variables of interest (Verhoest et al. 2015). This method is shown in Figure 1 which can be extended to multi-22 

dimensional quantile mapping using more than one covariate for the air temperature. The difference between BCQM-I and 23 

BCQM-II is the choice for a particular covariate. 24 

2.3.5.1 BCQM-type I- 25 

In BCQM-I, one bivariate copula describes dependence structure between forecasted variable and elevation, and other bivariate 26 

copula describes dependence structure between observed variable and elevation. The variables 𝑅 andmarginal quantiles of 27 

elevations 𝑢𝑅𝑒 are defined as: 28 

𝑅 = √(𝑥𝑠)2 + (𝑦𝑠)2 + (𝑒𝑠)2.           (11) 29 

𝑢𝑅𝑒 =
rank(𝑒𝑠𝑅)

𝑘+1
.,             (1211) 30 
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Where where 𝑥𝑠 and 𝑦𝑠  are the coordinates (in meters) in the universal transverse Mercator (UTM) coordinate system and 𝑒𝑠 1 

is the elevation (in meter) of the unvisited locations. The variable 𝑅 is treated as a random variable due to uncertainty in 2 

positioning and elevation. It indicates effects of land cover and elevation on the air temperature over the study area. The idea 3 

of this mapping is to use 𝑅  elevation and the air temperature to estimate copulas. Then, the conditional quantile 4 

𝑃(𝑍2 ≤ 𝑧2|𝑅𝐸 = re) at an unvisited location is used to estimate the conditional quantile 𝑃(𝑍1 ≤ 𝑧1|𝑅𝐸 = 𝑟𝑒) at the same 5 

location. For this quantile mapping, two conditional copulas  𝐶𝑢𝑅𝑒
𝑡 (𝑢1) and  𝐶𝑢𝑒𝑅

𝑡 (𝑢2)  are constructed as: 6 

𝑃(𝑍1 ≤ 𝑧1|𝑅𝐸 = 𝑟𝑒) = 𝐶𝑢𝑒
 𝐶𝑢𝑅

𝑡 (𝑢1) = 𝐶𝑡𝐶(𝑈1 ≤ 𝑢1|𝑈𝑒 = 𝑢𝑅𝑒) =
𝜕 ∁𝑡𝐶(𝑈𝑒𝑢𝑅,𝑢𝑈1)

𝜕𝑈𝑒𝑢𝑅
= 𝑝𝑢1|𝑢𝑒

,      𝐶: [0,1]2 → [0,1].,   (1312)  7 

𝑃(𝑍2 ≤ 𝑧2|𝐸 = 𝑒𝑅 = r) = 𝐶𝑢𝑒
 𝐶u𝑅

𝑡 (𝑢2) = 𝐶𝑡𝐶(𝑈2 ≤ 𝑢2|𝑈𝑒 = 𝑢𝑒𝑢𝑅) =
𝜕 ∁𝑡𝐶(𝑈𝑒𝑢𝑅,𝑈𝑢2)

𝜕𝑈𝑒𝑢𝑅
= 𝑝𝑢2|𝑢𝑒

,    𝐶: [0,1]2 → [0,1].,  8 

(1413) 9 

where 𝑢1  and 𝑢2  are calculated following Eq. (5), 𝐶𝑢𝑒
(𝑢1) and 𝐶𝑢𝑒

(𝑢2)  are conditional copulas describing dependence 10 

between measurements and elevation, and between forecasted air temperature and elevation, respectively. Substituting the 11 

quantiles 𝑝𝑢2|𝑢𝑒
𝑝𝑢2

 for 𝑝𝑢1|𝑢𝑒
𝑝𝑢1

 into Eq. (1312) yields the realization of the random variable 𝑍̂1 as it is explained in Eq. (9) 12 

and (10).  13 

2.3.5.2 BCQM-type II 14 

In BCQM-II, one bivariate copula describes dependence structure between forecasted air temperature and its nearest 15 

neighbour, and another copula describes dependence structure between measurements and its nearest neighbour. The idea of 16 

the BCQM-type II method is to use nearest observed neighbour to an unvisited location to estimate copulas. To select the 17 

nearest neighbour to an unvisited location, the distance between two locations is calculated using three dimensional 18 

coordinates. Then, the conditional quantile 𝑃(𝑍2 ≤ 𝑧2
𝑠|𝑍21 = 𝑧21

𝑛𝑒𝑖𝑔ℎ
)  at an unvisited location is used to estimate the 19 

conditional quantile 𝑃(𝑍1 ≤ 𝑧1
𝑠|𝑍1 = 𝑧1

𝑛𝑒𝑖𝑔ℎ
) at the same location. For this quantile mapping, two bivariate conditional 20 

copulas 𝐶
𝑢1

𝑛𝑒𝑖𝑔ℎ  𝐶
𝑢1

𝑛𝑒𝑖𝑔ℎ
𝑡 (𝑢1

𝑠) and 𝐶
𝑢1

𝑛𝑒𝑖𝑔ℎ  𝐶
𝑢2

𝑛𝑒𝑖𝑔ℎ
𝑡 (𝑢2

𝑠)  are constructed as: 21 

𝑃(𝑍1 ≤ 𝑧1
𝑠|𝑍1 = 𝑧1

𝑛𝑒𝑖𝑔ℎ
) = 𝐶

𝑢1
𝑛𝑒𝑖𝑔ℎ(𝑢1

𝑠)𝐶
𝑢1

𝑛𝑒𝑖𝑔ℎ
𝑡 (𝑢1

𝑠) = 𝐶𝑡𝐶(𝑈1
𝑠 ≤ 𝑢1

𝑠|𝑈1
𝑛𝑒𝑖𝑔ℎ

= 𝑢1
𝑛𝑒𝑖𝑔ℎ

) =
𝜕 ∁𝑡𝐶(𝑢𝑈1

𝑛𝑒𝑖𝑔ℎ
,𝑢𝑈1

𝑠)

𝜕𝑢𝑈1
𝑛𝑒𝑖𝑔ℎ =22 

𝑝
𝑢1|𝑢1

𝑛𝑒𝑖𝑔ℎ , 𝐶: [0,1]2 → [0,1]., (1514) 23 

𝑃(𝑍2 ≤ 𝑧2
𝑠|𝑍21 = 𝑧21

𝑛𝑒𝑖𝑔ℎ
) = 𝐶

𝑢1
𝑛𝑒𝑖𝑔ℎ(𝑢2

𝑠)  𝐶
𝑢2

𝑛𝑒𝑖𝑔ℎ
𝑡 (𝑢2

𝑠) = 𝐶𝑡𝐶(𝑈2
𝑠 ≤ 𝑢2

𝑠|𝑈1
𝑛𝑒𝑖𝑔ℎ

= 𝑢21
𝑛𝑒𝑖𝑔ℎ

) =
𝜕 ∁𝑡𝐶(𝑢𝑈21

𝑛𝑒𝑖𝑔ℎ
,𝑢𝑈2

𝑠)

𝜕𝑢𝑈21
𝑛𝑒𝑖𝑔ℎ =24 

𝑝
𝑢2|𝑢1

𝑛𝑒𝑖𝑔ℎ , 𝐶: [0,1]2 → [0,1]., (1615) 25 
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where 𝑢1 and 𝑢2 are calculated following Eq. (5). The copula 𝐶
𝑢1

𝑛𝑒𝑖𝑔ℎ 𝐶
𝑢𝑖

𝑛𝑒𝑖𝑔ℎ
𝑡 (𝑢𝑖

𝑠)  is the distribution of the variable of interest 1 

at unvisited location, conditioned on its nearest observed neighbour. Substituting the quantiles 𝑝
𝑢2|𝑢1

𝑛𝑒𝑖𝑔ℎ𝑝𝑢2
 for 𝑝

𝑢1|𝑢1
𝑛𝑒𝑖𝑔ℎ𝑝𝑢1

 2 

into Eq.(1514) yields the realization of the random variable 𝑍̂1 as it is explained in Eq. (9) and (10). 3 

2.3.6 Quantile search  4 

At a single moment t in time and location s in space, there is a conditional quantile 𝑝
𝑢1|𝑢𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒

, where 𝑢𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒 is marginal 5 

quantile of either forecasted variable in EP method or one of the covariates in BCQM methods explained in Sect. 2.3.2 and 6 

2.3.5, respectively. The conditional quantile is estimated using either EP or BCQM methods at an unvisited location. As can 7 

be seen in Figure 2, the conditional quantile is used to estimate the marginal quantile  𝑢̂1 using Eq. (9). The quantile search 8 

(QS) method generates variable 𝑈1 allows the combination of different criteria in estimating  and the bivariate copula is re-9 

estimated minimizing the error between the estimated marginal quantile  𝑢̂1  and true marginal quantile 𝑢1 . the marginal 10 

quantiles 𝑢1 at unvisited locations.In this way, quantile search steps are as follows:  11 

1) The conditional quantiles 𝑝
𝑢1|𝑢𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒

are calculated using either EP or BCQM methods for all locations.  12 

2) An initial variable 𝑈̂1 is generated by the search algorithm and the bivariate conditional copula is re-estimated. Then, 13 

the conditional quantiles 𝑝𝑢1|𝑢𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒
 and re-estimated copula are used to estimate the marginal quantile  𝑢̂1 using 14 

Eq. (9); 15 

3) The mean relative error (MRE) for weather stations is calculated as:  16 

𝑀𝑅𝐸 =
1

𝑛
∑ (

|𝑢1
𝑠 −𝑢1

𝑠 |

𝑢1
𝑠 )𝑠=𝑛

𝑠=1 ,          (16)  17 

where 𝑀𝑅𝐸 is the mean relative error and n is number of observations. The search algorithm improve the variable 𝑈̂1in 18 

an iterative process by means of minimizing the MRE. 19 

As the marginal quantile 𝑢1 lies in the range [0, 1], it can be estimated using a search algorithm by means of maximizing a 20 

fitness function f as: 21 

𝑝̂𝑢1
= 𝐶̂∗(𝑢̂1);     ∗∶ {𝑢2, 𝑢𝑅, 𝑢1

𝑛𝑒𝑖𝑔ℎ
}.         (17) 22 

 𝑅𝐸∗ =
|𝑝𝑢1−𝑝𝑢1|

𝑝𝑢1

 ;  𝑀𝑅𝐸∗ =
1

𝑛
∑ (𝑅𝐸∗

𝑠)𝑠=𝑛
𝑠=1  .          (18)  23 

𝑓(𝑢̂1) = − ∑ 𝑤∗ × 𝑀𝑅𝐸∗.           (19)  24 

Here 𝑝̂𝑢1
and 𝑢̂1 are conditional and marginal quantiles estimated by the quantile search, 𝑤∗ is arbitrary weight set equal to 25 

0.33 in this study, 𝑀𝑅𝐸∗ is the mean relative error, n is number of weather stations, and 𝑅𝐸𝑢2
 is the relative error between two 26 

quantiles of 𝐶𝑢2
𝑡 (𝑢1) and 𝐶̂𝑢2

𝑡 (𝑢̂1) as explained in the Sect. 2.2. 𝑅𝐸𝑢𝑅
 is the relative error between two quantiles of 𝐶𝑢𝑒

𝑡 (𝑢1) 27 

and  𝐶̂𝑢𝑒
𝑡 (𝑢̂1) as explained in the Sect. 2.3.5.1. 𝑅𝐸

𝑢1
𝑛𝑒𝑖𝑔ℎ  is the relative error between two quantiles of  𝐶

𝑢1
𝑛𝑒𝑖𝑔ℎ

𝑡 (𝑢1) 28 
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and 𝐶̂
𝑢1

𝑛𝑒𝑖𝑔ℎ
𝑡 (𝑢̂1) as explained in the Sect. 2.3.5.2. The 𝑀𝑅𝐸 ensures that the prediction’s errors are minimized at the weather 1 

stations. The 𝑅𝐸∗ allows us to ensure that dependence structure of the observed and forecasted variables as well as the observed 2 

variable and covariates are considered in the finding the marginal quantile. Values of the fitness function 𝑓(𝑢̂1) are calculated 3 

using initial random values for 𝑢̂1 and the search algorithm improve the quantile 𝑢̂1 in an iterative process. Therefore, the 4 

fitness values should well represent the estimation errors and the dependence structures at unvisited locations. 5 

A realization of the random variable 𝑍̂1
𝑡,𝑠

 is obtained using a marginal transformation in Eq. (10) based on the estimated 6 

quantiles at unvisited locations in Eq. (9). In this study, a linear combination of MREs are used which are calculated based on 7 

three bivariate copulas 𝐶𝑢2
(𝑢1),  𝐶𝑢𝑒

(𝑢1) and 𝐶
𝑢1

𝑛𝑒𝑖𝑔ℎ(𝑢1
𝑠)  as explained in Sect. 2.3.2 and 2.3.5, respectively. There are several 8 

methods that lead to the minimization of the error (Burke and Kendall, 2014). HereIn this study, we applied a genetic algorithm 9 

for doing the search. Details on this algorithm can be found in the literature (Sastry et al., 2013) and are beyond the scope of 10 

this paper. The sample code to implement in R, however, is given in the appendix 3. 11 

 12 

2.4 Evaluation of the copula-based bias correction methods 13 

The newly developed methods are applied to each time step of the air temperature time series. These time steps represent 14 

different bias and dependencies structures between the observed and forecasted variables. The observations from weather 15 

stations are used for cross-validation to quantify the robustness of the each method (Lafon et al. 2013). To this end, one 16 

observation 𝑧1
𝑠,𝑡

 is removed from the dataset and the bias-corrected value 𝑧̂1
𝑠,𝑡

 is calculated for this point using the reminder of 17 

the stations. This method is repeated for all stations. For each observation assigned to the one location s and time t, that is not 18 

included in the bias correction process, the absolute error (AE) is determined, using:  19 

𝐴𝐸𝑠,𝑡 = |𝑧̂1
𝑠,𝑡 − 𝑧1

𝑠,𝑡|.            (2017) 20 

The spatial mean absolute error (SMAE) is calculated at each weather station as: 21 

𝑆𝑀𝐴𝐸𝑠 =
1

𝑇
∑ (𝐴𝐸𝑠,𝑡).𝑡=𝑇

𝑡=1 ,           (2118) 22 

where T is the number of time steps in time series. To compare the five bias correction methods based on the SMAE, an error 23 

score (ES) is calculated based on the SMAE for each method at each weather station (Durai and Bhradwaj 2014). A minimum 24 

value of The smallest the error score  ES indicates for the minimum smallest SMAE. The error measures do not provide any 25 

spatial information of the bias-corrected variable. The idea behind the SMAE was to provide criteria when one can compare 26 

different methods. A low number of observations can hinder a deeper analysis. The overall prediction quality depends on a 27 

good model of the copula, a good fit of the marginal distributions as well as the number of the observations.  28 

In addition, the correlation coefficient r (CC) between observed and bias-corrected values is calculated at each weather station 29 

as: 30 

𝐶𝐶𝑟𝑠 =
𝑐𝑜𝑣{𝑍1

𝑠,𝑍̂1
𝑠}

𝜎𝑍1
𝑠 𝜎𝑍̂1

𝑠
;     𝑍1

𝑠 = {𝑧1
𝑠,1, 𝑧1

𝑠,2, … , 𝑧1
𝑠,𝑇},     𝑍̂1

𝑠 = {𝑧̂1
𝑠,1, 𝑧̂1

𝑠,2, … , 𝑧̂1
𝑠,𝑇},.     (2219) 31 
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Where where 𝑍1
𝑠 is the measurement from weather stations observation values and,  𝑍̂1

𝑠 is the biased-corrected values obtained 1 

by cross-validation, and T is the number of time steps in time series.. To compare the five bias correction methods based on r, 2 

an correlation score (CS) is calculated based on the CC for each method at each weather station. A minimum value of the 3 

correlation score The smallest CS indicates for the minimum smallest CCr. 4 

For investigating the performance of each method to reproduce the high moments of the marginal distribution; mean, standard 5 

deviation (as well as coefficient of variation), skewness and kurtosis, the relative error 𝑅𝐸𝑚𝑖  is calculated as: 6 

𝑅𝐸𝑚𝑖,𝑡 =
|𝑚𝑖

𝑡−𝑚̂𝑖
𝑡|

|𝑚𝑖
𝑡|

,.  i=1:5,             (2320) 7 

where 𝑚𝑖
𝑡 and 𝑚̂𝑖

𝑡 are the ith order moment of the marginal distribution calculated using observed measurement values 𝑧1 from 8 

weather stations and bias-corrected values  𝑧̂1 at time moment t in time. The bias-corrected values 𝑧̂1 are predicted where 9 

correction functions are estimated using the measurement from weather stations observed values and applied to the same 10 

locations (Lafon et al. 2013).  11 

The moment mean relative error (MMRE) is calculated at each weather station as: 12 

𝑀𝑀𝑅𝐸𝑚𝑖 =
1

𝑇
∑ (𝑅𝐸𝑚𝑖,𝑡).𝑡=𝑇

𝑡=1           (2421) 13 

where T is the number of time steps in time series. To compare the five bias correction methods based on the MMRE, an error 14 

score (ES) is calculated based on the MMRE for each method and for each moment. A minimum value of the error score The 15 

smallest ES indicates for the minimum smallest MMRE. 16 

The study was performed in the statistical computing environment and language R using the packages gstat (Pebesma 2004), 17 

copula (Kojadinovic and Yan 2010), spcopula (Gräler 2011), VineCopula (Brechmann and Schepsmeier 2013), GA (Scrucca 18 

2012) and the basic packages. 19 

3 Case study  20 

The study area is located between 36.30 35.99 and 35.99 36.30 latitudes (N) and 49.64 and 50.59 longitudes (E), with a total 21 

area of 3307 km2 in the Qazvin plain, Iran (Figure 3). This area includes an irrigation network, agricultural fields, dominated 22 

by wheat, barely, maize, sugar beet, summer crops and orchards, urban areas, bare soil and natural vegetation. The crop 23 

calendar is listed in Table 3. Part of this area has been the pilot for a project aiming at development of a planning and monitoring 24 

system to support irrigation management of the Qazvin irrigation network (Sharifi 2013). One of the objectives of this project 25 

is to produce daily air temperature map from point measurements and apply it toto be used in crop growth simulations for 26 

assessing near-real time crop and irrigation water requirement.  27 

Considering the importance of June in the crop calendar of the study area which is the end of winter crops and beginning of  28 

summer crops especially maize, we applied the proposed methods to available dataset of this month. Five Eight weather 29 

stations (Table 2) were selected because they had a long range of air temperature measurements available and were well spread 30 

over the study area. Minimum and maximum distances between stations are 13 and 78 km, respectively (Figure 3). For all 31 
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weather stations, the daily minimum and maximum air temperatures are available for the periods 1– 31 March  and 1-30 June 1 

20142004 to 2014, except for the second station on 20 March and 23 June and for the first station on 30 June. The quality of 2 

measurements and number of missing values differ at each stations (Table 2). Daily air temperature is determined by averaging 3 

the minimum and maximum temperatures at each weather stations for each day.  4 

We used the operational forecast weather data provided by the European Centre for Medium-Range Weather Forecasts 5 

(ECMWF). All ECMWF data are available at 3-hourly and 6-hourly intervals from the ERA-Interim data assimilation system 6 

and can be retrieved for a 0.125º lat/lon grid points, corresponding to approximately 13.5 km in the meridional direction 7 

(Persson 2013). A sample subset of 3 × 8 grid points is selected for the periods 1– 31 March and 1– 30 June 2014 2004 to 2014 8 

which covers the irrigation network (Figure 3).  9 

To analyse the temporal variability of dependence structure which is modelled by copula’s parameter, the proposed bias 10 

correction methods are applied separately at each day in June 2014. Due to lack of availability of daily air temperature 11 

measurements in 2014 over the study area,  copulas and marginal distributions are fitted to the eleven years series of the daily 12 

air temperature data. Due to the coarse spatial resolution of ECMWF data, there is an apparent mismatch between 13 

measurements obtained from weather stations and weather forecast data. To evaluate the proposed methods using cross-14 

validation, To correct for bias in weather forecast data, either an observed value or the average of several observed values 15 

corresponds to a single grid point if distance between the station and the grid point is negligible. As shown in the Figure 3, we 16 

selected six grid points and corresponding weather stations. For cross-validation, stations number four and seven correspond 17 

to grid point four and stations number one and six correspond to grid point twenty four. In the study area, however, many grid 18 

points do not contain an observation due to the relatively low number of weather stations. In order to obtain unbiased values, 19 

a bias correction method should be applied for these grid points before using the weather forecast data. 20 

4 Results 21 

This section presents the results, where the observed values are the daily air temperatures at five weather stations, forecasted 22 

values are the daily air temperatures obtained from ECMWF, and the bias-corrected values are the results of the bias correction 23 

methods (MQM, EP, BCQM-type I, BCQM-type II and QS) for twenty-four grid points during the periods 1– 31 March and 24 

1– 30 June 2014.  25 

4.1 Outlier and biasBias and moments of marginal distribution 26 

The graphical comparison of the observed and the forecasted time series of temperature as shown in Figure 2 identifies both 27 

bias and outliers. Abrupt changes in the trend correspond to the outliers (Aggarwal 2013). As can be seen, when there is a drop 28 

of the observed air temperature, the forecast system produces outliers. Figure 3 shows the scatterplot between the observed 29 

and the forecasted values at each weather station. For all stations, outliers occurred on days 8, 19, 22 and 31 in March. The 30 
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forecasted values are negative on days 22 and 31 in March. Since bias correction was applied separately for each day, there 1 

was no need to remove the outliers.  2 

In addition, the Figure 4 shows the time series of the observed and the forecasted values at each station in June 2014. A 3 

graphical inspection comparison in reveals that the daily air temperature is underestimated by ECMWF. The extrapolation of 4 

climate information from uncertain measurements and time-varying bias in the ECMWF models and observations are 5 

associated with uncertainties in the forecasted data (Dee et al. 2011). The average of bias for all stations and all days equalsis 6 

3.4°C if the outliers (on the days 8, 19, 22 and 31) are ignored and 4.1 4.5°C in March and June 2014, respectively. Since there 7 

is both spatial and temporal variability in the bias, we were not able to correct for bias at one day and an unvisited location 8 

using the average value of bias. 9 

 Figure 3 Figure 5 shows the scatterplot between the observed and the forecasted values at each weather station. As can be 10 

seen, the observed air temperature series at stations seven and eight are less correlated with forecasted air temperature series 11 

than the other stations and it is expected to affect the cross-validation. Sensors and quality of measurements at these two 12 

stations differ from the rest (Table 2).  13 

Figure 6 shows the mean, sample standard deviation, coefficient of variation, skewness and kurtosis for both observed and 14 

forecasted values at each day from all weather stations. Since we considered empirical marginal distributions for the observed 15 

and forecasted variables, sample moments are calculated using values from all stations at each day during June 2014. This 16 

figure shows, in time, clearly visible bias in all moments of the marginal distribution. The daily variability of bias in skewness 17 

and kurtosis are higher than other sample moments. Classical bias correction methods are inadequate to improve all order 18 

moments of the marginal distribution (Lafon et al. 2013). In addition, spatial variability of the observed values is higher than 19 

the forecasted values, based on the coefficients of variation. In Sect. 4.3 below, we investigate how well the moments can be 20 

reproduced by the described methods correct for bias in the moment of the distribution and in spatial variability of the bias-21 

corrected values.  22 

4.2 Marginal distributions and copulas 23 

In order to not affect the copula by the estimation of the marginal distribution functions, the empirical marginal quantiles 24 

values 𝑢1 and 𝑢2 were calculated using the daily air temperature data between 2004 and 2014 the available data for both 25 

observed and forecasted air temperature for at each day as mentioned in Sect. 2.2. The empirical quantiles , however, are 26 

typically limited to the domain defined by the extreme values in the observations. Therefore, A third degree polynomial a 27 

spline was fitted to the empirical marginal quantiles of the observed values, 𝑢1 to extending the marginal quantiles towards 28 

the unvisited locations as well. The empirical marginal quantiles of the observed values and the fitted polynomials spline as 29 

well as empirical marginal quantiles of the forecasted values are presented in for at first day of March and June in Figure 7. It 30 

shows a clear gap between the quantiles at lower tails of the empirical distributions which is related to a drop in the air 31 

temperature in June 2009. In addition, when there is a drop in the observed air temperature, the ECMWF forecasts result in 32 

more underestimations of the forecasted temperature.  33 
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For the EP and BCQM-II methods, Tthe bivariate conditional copulas describing dependence between the observed and 1 

forecasted variables were fitted to the eleven years series of the air temperature data the empirical marginal quantiles for at 2 

each day. In BCQM-I, the bivariate copulas describing dependence between air temperature and elevation were fitted to the 3 

eleven years series of the air temperature data and one year elevation data at each day.  4 

Following Section. 2.2, five copula families were selected to analyse the dependence structures. These families and their 5 

indices are listed in Table 2. In addition, five families were estimated at for each day to assess the temporal variability of 6 

copula’s parameter and the most suitable family according to AIC was selected according to AIC. Table 4 shows the best 7 

families indices and Kendall’s  at each day in March and June. As can be seen, Except for the dependence between the 8 

forecasted variable and the elevation, suitable families of the dependence between the observed and forecasted variables were 9 

non-Gaussian at for most of days in March June and Gaussian  at most of days in June and these families covered the range 10 

from negative to positive dependences. The dependence between the observed and forecasted variables is described by Gumbel 11 

copula for most of days. The negative Gaussian dependences between the forecasted variable and the elevation at all days are 12 

related to assumptions in statistical and physical models in the ECMWF forecasts. The selection of families, however, depends 13 

upon the number of observations and further research is needed to develop strategies to select them. In addition, as all five 14 

families were symmetric, alternative families can be investigated to better describe the dependencies. It must be mentioned 15 

that although Although many different families exist allowing for different dependence structures, the computational 16 

limitations may be introduced by the calculating the inverse of the conditional copula distribution. 17 

The p-values for the best copula family at each day are listed in Table 4. For all methods, the p-values are higher than 0.3 for 18 

most of copulas. For all Student’s t copulas, p-values obtained using White statistic were approximately one.  19 

4.3 Cross-validation results and the bias-corrected values 𝒛̂𝟏 20 

Applying the described methods to the same data allowed us to compare the different underlying definitions. Table 5 shows 21 

the cross-validation results in terms of the spatial mean absolute error (SMAE) between the observations and the bias-corrected 22 

values at each weather stationsgrid points for five bias correction methods and their scores during June 2014. The grid point 23 

and corresponding weather station/s are listed in the first two columns of this table. For all methods, errors in grid points four 24 

and eleven are higher than the rest as it is also illustrated by a lower correlation between the observed and forecasted variables 25 

at weather stations seven and eight (Figure 4). A comparison between the newly developed methods BCQM-type I, BCQM-26 

type II, QS, the available copula-based method EP and the classical bias correction method MQM based upon the error scores 27 

(ES) has shownshows that QS performed best, followed by BCQM-II, QM ,EP, MQM and BCQM-type I., BCQM-type II, in 28 

March and June.  29 

Table 6 shows the cross-validation results in terms of the correlation coefficient r (CC) between the observations and the bias-30 

corrected values at each weather stations for five bias correction methods and their scores during June 2014. r values for the 31 

new methods denote that the time series of the air temperature were successfully reproduced, although the bias correction 32 

methods are separately applied at each day. A comparison between the newly developed methods BCQM-type I, BCQM-type 33 
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II, QS, available copula-based method EP and classical bias correction method MQM among the five bias correction methods 1 

based upon the correlation score (CS) has shown shows that QS performed best, followed by EP, BCQM-type II, MQM, EP 2 

BCQM-II and BCQM-type I, in March and June.  3 

The first station has the largest temperature values in both March and June, the second and the fifth stations have the smallest 4 

temperature values in March, the third and the fifth stations have the smallest temperature values in June, among the five 5 

stations, at most of days. Since for all methods, the empirical marginal distributions were the same, the copulas were unable 6 

to capture the extreme values. In addition, the SMAE represents the uncertainties associated to horizontal distances, height 7 

differences, differences in land cover and vegetation coverage between the stations and the grid points.  8 

Table 7 shows the moment mean relative error (MMRE) between the observations and the bias-corrected values at each 9 

weather stations for five bias correction methods and their scores. Since we considered empirical marginal distributions for 10 

the observed variable, sample moments were obtained using values from all stations at each day of June 2014. A comparison 11 

between the newly developed methods BCQM-type I, BCQM-type II, QS, available copula-based method EP and classical 12 

bias correction method MQM among the five bias correction methods based upon the error score (ES) shows has shown that 13 

QS new methods performed best,better than followed by EP, BCQM-type II,  and MQM, and BCQM-type I, in March and 14 

June. 15 

Figure 6 shows that the observed variable has a higher coefficient of variation than the forecasted variable for instance at days 16 

4, 12 and 30. The spatial variation variabilities and error bars of the bias-corrected variable at some these days for all locations 17 

is are shown in  and  Figure 8for March and June, respectively. It can be seen that the The spatial variabilities variation obtained 18 

by newly developed methods were much higher than those obtained by MQM and EP. MQM, BCQM-type I and BCQM-type 19 

II were unable to correct for bias at some locations. The smoothing effect of EP can be seen in occurs at all days 6 and 13 20 

in(Figure 8), as well. The spatial variabilities of bias-corrected values obtained by MQM and EP follow the spatial variabilities 21 

of the forecasted values. QS performed better to obtain the spatial variation.at the weather stations due to the fitness function 22 

in Sect. 2.3.7. How to analyse the spatial variability of the bias-corrected air temperature at unvisited locations is still a 23 

challenging question due to low number of observations.  24 

5 Discussion  25 

The dependence structure between the daily air temperature observed by the weather stations and forecasted by ECMWF was 26 

studied for bias correction. We utilized the concept of bivariate conditional copula to develop three new methods in the bias 27 

correction methods, as bivariate copulas are well understood and easy to estimate. We picked up the idea of the quantile 28 

mapping and adapted it to the bivariate conditional copula to develop the new methods BCQM-type I and BCQM-type II that 29 

allow estimating different conditional quantiles at different unvisited locations. The flexibility in the determining of the 30 

conditional quantiles makes the newly developed methods appealing for spatial variabilities at unvisited locations when low 31 

number of observations are available. The estimation of marginal distributions and copulas, however, are affected by the low 32 
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number of observations. In addition, the The new methods quantile search QS was were proposed to find the marginal quantiles 1 

that might benefit from a fitness function  that does not only take into account the prediction errors, but also the spatial 2 

variabilities at the unvisited locations. Furthermore, our proposed methods utilized the flexibility of selecting different families 3 

and allowed for temporal variability of dependencies.  4 

We treated the available observations from five eight weather stations as a reference during the identification of bias and during 5 

the validation of the results. The horizontal distances, height differences and difference in land cover between the location of 6 

a station and the ECMWF grid point is associated with uncertainties. In addition, in the copula-based methods, where we used 7 

the AIC to select the suitable family for constructing the dependence between the forecasted and the observed variables, 8 

additional uncertainties present because the suitability of family depends on the availability of data and the probabilistic nature 9 

of the bias. Furthermore, based on the cross-validation results, the average of the mean absolute errors in all stations and all 10 

days appeared to be slightly more than 1°C for all proposed methods. As mentioned in Sect. 3, the bias-corrected air 11 

temperature can be used for crop growth simulation as well as determination of crop water requirement. The impact of air 12 

temperature variability on crop production is dependent on growing-season temperature and the optimum temperature for 13 

photosynthesis and biomass accumulation. Asseng et al. 2011 showed that, depending on the time and temperature, the 14 

variation in the average growing-season temperature could cause a significant reduction in wheat grain production. Further 15 

studies are necessary to quantify the impact of temperature variability on crop production in the study area.     16 

A practical advantage of the proposed methods is that they are not restricted to remove autocorrelation and heteroscedasticity 17 

in time series (Laux et al. 2011) and the time series of the air temperature at each station were successfully reproduced by 18 

applying the bias correction separately at each day. Another aspect is the ability of the new methods to reproduce the moments 19 

of the marginal distribution of the observed variable. Correction of the higher moments of the distribution is much more 20 

sensitive to the choice of the bias correction method, which needs to be investigated more in further studies. In addition, in the 21 

proposed methods, the empirical marginal distribution described the statistical properties of daily air temperature without the 22 

knowledge of theoretical form of the family’s distribution function. Furthermore, fitting a polynomial spline to the empirical 23 

marginal quantiles was beneficial to obtain the bias-corrected values at unvisited locations that were not limited to the domain 24 

defined by the extreme values in the observations. With respect to the newly described methods, although we applied the 25 

methods for correcting the bias, we highlight the potential and the use of the methods for the copula-based downscaling 26 

problems, as well. Moreover, the proposed methods have the potential to use the spatio-temporal information of the variable 27 

of interest in the bias correction process. The further comparison of the proposed methods and other bias correction methods 28 

e.g. triple collocation analysis (Stoffelen 1998) might help to assess the performance of the newly developed methods. 29 

Lack of spatial variability in the available copula-based bias correction methods motivated the research to develop new 30 

methods with the aim of estimating different conditional quantiles at different locations. The spatial variability of the air 31 

temperature, however, needs additional analysis, as the number of observations is small. Based on the available literature, 32 

estimating the confidence intervals is a common task to address the uncertainties in the copula-based methods. The 33 

applicability of confidence intervals, however, always depends on the availability of data and the nature of the real world 34 
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problem. In addition, for the BCQM-type I and BCQM-type II methods, it is assumed that the associations dependence 1 

structure between the pair of the bias-corrected variable and a the covariate should obey the associations dependence structure 2 

between the pair of the biased variable and that covariate. For QS method it is assumed that the fitness functionerrors fitted 3 

tocalculated by the observations is an acceptable representation of fitness functionerrors at unvisited locations. In the case the 4 

underlying assumptions of these methods are hard to be fulfilled, alternatives are needed.  5 

6 Conclusions 6 

In this paper, we developed three copula-based bias correction methods with the aim of predicting different conditional 7 

quantiles at unvisited locations and compared them to available methods. They were applied to correct bias in the daily air 8 

temperature forecasts of ECMWF. To evaluate their performance, cross-validation was carried out with the observations from 9 

five eight weather stations.   10 

From this study, based on the error measures in Table 5 and 7 and  the correlation coefficients in Table 6, we conclude the 11 

following:  12 

 The new methods are beneficial for the local refinement of weather data if a low number of observations is available 13 

and one is interested in predicting the spatial variabilities of the weather parameter.  14 

 The new methods are advantageous if the bias-corrected variable has to be predicted separately at each time step of 15 

the time series.  16 

 Further research should focus on investigating the optimal number of observations for bias correction and on 17 

developing validation criteria. In both issues, the spatial variability and the error of the predictions in case of a low 18 

number of observations should be included.  19 
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Appendix: 17 

1. Conditional copula  18 

In the case of constructing bivariate copulas, it can be shown that:  19 

 𝑐(𝑈 ≤ 𝑢|𝑉 = 𝑣) = 𝑐(𝑈, 𝑉) =
𝜕2𝐶(𝑈,𝑉)

𝜕𝑈𝜕𝑉
, 20 

where 𝑐(𝑈 ≤ 𝑢|𝑉 = 𝑣)  is conditional density and 𝑐(𝑈, 𝑉)  is joint density distribution. In copulas, marginals (𝑈, 𝑉) are 21 

uniformly distributed i.e. f(U)=f(V)=1, F(U)=U and F(V)=V, where f and F are density and cumulative distribution functions, 22 

respectively (Kuipers and Niederreiter, 2012). The conditional cumulative distribution is given as (Nelsen 2006):  23 

𝐶(𝑈 ≤ 𝑢|𝑉 = 𝑣) =
𝜕𝐶(𝑈,𝑉)

𝜕𝑉
. 24 

The conditional density distribution is derivative of cumulative distribution to its variable: 25 

𝑐(𝑈 ≤ 𝑢|𝑉 = 𝑣) =
𝜕

𝜕𝑈
(𝐶(𝑈 ≤ 𝑢|𝑉 = 𝑣)) =

𝜕

𝜕𝑈
(

𝜕𝐶(𝑈, 𝑉)

𝜕𝑉
) =

𝜕2𝐶(𝑈, 𝑉)

𝜕𝑈𝜕𝑉
. 26 

In addition, the joint density distribution is derivative of cumulative distribution to its variables: 27 

𝑐(𝑈, 𝑉) =
𝜕2𝐶(𝑈,𝑉)

𝜕𝑈𝜕𝑉
.  28 
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2. Conditional expectation 1 

Let (𝑥1, 𝑦1), (𝑥2, 𝑦2), …, (𝑥𝑛 , 𝑦𝑛) be a set of observations for variables 𝑋 and 𝑌. If 𝑥1 >  𝑥2 and 𝑦1 >  𝑦2, the pair is concordant. 2 

If 𝑥1 >  𝑥2 and 𝑦1 <  𝑦2, the pair is discordant. When the number of concordant pairs is more (or less) than discordant pairs, 3 

the dependence between 𝑋 and 𝑌 is positive (or negative) (Nelsen 2006) .  4 

The conditional expectation is defined as: 5 

𝐸[𝑥| 𝑦] = ∫ 𝑋. 𝑓(𝑋 ≤ 𝑥|𝑌 = 𝑦)𝑑𝑋
𝑥

= ∫ (𝐹)−1(𝑈). 𝑐(𝑈 ≤ 𝑢|𝑉 = 𝑣)𝑑𝑈
1

0

. 6 

The conditional expectation is  either an increasing or a decreasing function of the conditioning variable i.e. if 𝑥1 >  𝑥2 then 7 

𝐸[𝑥1| 𝑦] >  𝐸[𝑥2| 𝑦] (Dodds et al., 1990). Therefore, after applying conditional expectation, the empirical marginal quantiles 8 

of predicted variable 𝑋𝑝𝑟𝑑: {𝐸[𝑥1| 𝑦1], … , 𝐸[𝑥𝑛| 𝑦𝑛]} equals the empirical marginal quantiles of Y i.e. 𝑣 or 1 − 𝑣 in the case of 9 

positive or negative dependence.  10 

3. Genetic algorithm in R 11 

Ga(type = c("real-valued"), fitness = Fitness function,…,min = min_u, max = max_u, popSize =100 ,maxiter = 100, seed=500, 12 

parallel = T), where “type” is the type of genetic algorithm to be run depending on the nature of decision variables, the fitness 13 

function is any allowable R function which takes as input a vector of length equal to marginal quantiles at unvisited 14 

locations representing a potential solution, and returns a numerical value describing its “fitness”, min_u and max_u are vector 15 

of length equal to the marginal quantiles providing the minimum and maximum of the search space and “popSize”  and 16 

“maxiter” are the population size and maximum iteration which are selected arbitrary.  17 
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Table 1: Five families of copulas are selected to describe the dependence structure between the conditioned and the conditioning 1 
variables in this study. A bivariate copula is fitted on to the marginal values quantiles and the most suitable family is selected 2 
according to the Akaike Information Criteria (AIC) for each day.  3 

Index Name Cθ(u,v) Property index 

1 Gaussian ∅𝑅(∅−1(𝑢), ∅−1(𝑣)); 𝑅 = [
1 𝜃
𝜃 1

] 1, 2, 6 

2 Student’s t 𝑡𝑅,𝜗 (𝑡𝜗
−1(𝑢), 𝑡𝜗

−1(𝑣)) ;  𝑅 = [
1 𝜃
𝜃 1

] ;  𝜗 = 𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑓𝑟𝑒𝑒𝑑𝑜𝑚 1, 2, 6 

3 Clayton [𝑚𝑎𝑥{(𝑢𝜃 + 𝑣𝜃 − 1), 0}]
−1
𝜃  1, 2,4,5,6 

4 Gumbel exp (−[(−𝑙𝑛𝑢)𝜃 + (−𝑙𝑛𝑣)𝜃]
1
𝜃) 1,2,3,6 

5 Frank 
−1

𝜃
ln (1 +

(𝑒−𝜃𝑢 − 1)(𝑒−𝜃𝑣 − 1)

𝑒−𝜃 − 1
) 1,2,6 

1 

P
ro

p
er

ty
 

Permutation symmetry 

2 Symmetry about medians 

3 Extreme value Copula 

4 Lower tail dependence 

5 Upper tail dependence 

6 Extendibility to Multivariate Copula 

Table 2: Five Eight weather stations are selected due to the measure air temperature measurements available over the entire in the 4 
study area. For all weather stations, minimum Minimum and maximum air temperatures are available for the periods 1– 31 March  5 
and 1-30 June 20142004 to 2014, except for the second station on 20 March and 23 June and for the first station on 30 June. 6 

Station 

ID 
Station name Latitude Longitude Elevation(m) Type 

Air temperature 

measurements 

Number of 

observations during 

June in 2004 to 2014 

1 Abeyk 36.05 50.52 1291 Climatology type1 6 hourly 29 

2 Magsal 36.13 50.12 1260 Climatology type1 6 hourly 239 

3 Nirougah 36.18 50.25 1318 Climatology type1 6 hourly 270 

4 Qazvin 36.25 50.05 1278 Synoptic 3 hourly 330 

5 Takestan 36.05 49.65 1283 Synoptic 3 hourly 330 

6 Baghkousar 36.06 50.58 1225 Climatology type1 6 hourly 240 

7 KampMaskooni 36.27 49.99 1316 Climatology type2 Only minimum 

and maximum 

330 

8 DolatAbad 36.16 49.81 1285 Climatology type2 Only minimum 

and maximum 

210 

  7 
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Table 3: Crop data including the start of the growing season and harvesting time in the study area.  1 

Crop Start of growth End of growth 

Wheat 6 Nov. 5 Jul.  

Barley 27 Oct. 12 Jun. 

Canola 24 Sept. 14 Jun. 

sorghum 22 May 18 sept. 

Maize 10 May 12 Oct. 

alfalfa 7 Mar. 31 Oct. 

Vegetables 4 Apr.  20 Aug. 

Grape 21 Apr. 21 Oct. 

Fruit 21 Mar. 21 Oct. 

  2 
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Table 3: Table 4: The p-value, Bbest fitting family and Kendall’s  at each day for bivariate conditional copulas 𝑪𝒖𝟐

𝒕 (𝒖𝟏). The non-1 

Gaussian bivariate copulas dominate the non-spatial dependence structure of the observed and forecasted variables at most of the 2 
days in MarchJune. The copula family indices are listed in Table1.   3 

 𝑪𝒖𝟐
(𝒖𝟏) 𝑪

𝒖𝟏
𝒏𝒆𝒊𝒈𝒉(𝒖𝟐) 𝑪

𝒖𝟏
𝒏𝒆𝒊𝒈𝒉(𝒖𝟏) 𝑪𝒖𝒆

(𝒖𝟐) 𝑪𝒖𝒆
(𝒖𝟏) 

Day p-value Best  p-value Best  p-value Best  p-value Best  p-value Best  

1 0.66 5 0.43 0.46 5 0.56 0.32 5 0.47 0.81 1 -0.08 0.70 3 0.06 

2 0.30 3 0.35 1.00 2 0.45 0.30 4 0.44 0.64 1 -0.11 0.60 3 0.08 

3 0.74 1 0.29 1.00 2 0.32 0.58 4 0.32 0.68 1 -0.09 0.68 3 0.11 

4 1.00 2 0.21 1.00 2 0.31 0.99 2 0.29 0.70 1 -0.12 0.45 4 0.04 

5 1.00 2 0.29 1.00 2 0.42 0.95 3 0.35 0.72 1 -0.08 0.56 3 0.07 

6 1.00 2 0.35 0.56 5 0.51 0.66 3 0.38 0.83 1 -0.09 0.64 1 0.10 

7 0.34 4 0.33 0.17 4 0.37 0.44 5 0.28 0.54 1 -0.12 0.42 3 0.16 

8 1.00 2 0.23 1.00 2 0.34 0.98 2 0.17 0.75 1 -0.11 0.65 4 0.03 

9 0.26 3 0.44 0.97 2 0.55 0.50 4 0.43 0.70 1 -0.11 0.99 1 0.00 

10 0.50 5 0.43 0.36 5 0.54 0.68 4 0.38 0.79 1 -0.16 0.72 1 -0.06 

11 0.36 4 0.21 0.17 4 0.25 0.68 4 0.40 0.64 1 -0.14 0.97 4 0.02 

12 0.70 1 0.30 0.62 1 0.41 0.99 2 0.20 0.70 1 -0.11 0.38 5 0.16 

13 0.50 3 0.30 0.09 3 0.37 0.64 3 0.24 0.79 1 -0.12 0.50 5 0.21 

14 0.70 1 0.39 0.46 1 0.52 0.52 3 0.39 0.81 1 -0.10 0.46 5 0.16 

15 0.64 4 0.42 0.46 4 0.52 0.99 2 0.31 0.58 1 -0.12 0.77 3 0.08 

16 0.99 2 0.27 0.68 4 0.39 0.99 2 0.33 0.83 1 -0.09 0.36 3 0.13 

17 0.58 4 0.42 0.40 4 0.51 0.64 4 0.35 0.64 1 -0.12 0.54 3 0.05 

18 0.34 5 0.43 0.25 5 0.46 0.46 5 0.38 0.74 1 -0.12 0.66 1 -0.04 

19 0.46 5 0.53 0.32 5 0.60 0.42 5 0.43 0.58 1 -0.10 0.46 5 0.03 

20 0.97 2 0.46 0.99 2 0.50 0.95 2 0.36 0.72 1 -0.08 0.60 5 0.06 

21 0.34 4 0.40 0.83 5 0.40 0.98 2 0.34 0.38 1 -0.15 0.77 1 0.06 

22 0.87 4 0.38 0.58 4 0.44 0.83 4 0.28 0.68 1 -0.09 0.70 5 -0.01 

23 0.81 4 0.28 0.25 4 0.34 0.56 4 0.25 0.83 1 -0.10 0.54 1 -0.06 

24 0.62 5 0.28 0.34 5 0.40 0.62 4 0.36 0.64 1 -0.13 0.52 1 -0.08 

25 0.72 4 0.26 0.42 4 0.39 0.79 4 0.38 0.50 1 -0.20 0.68 5 0.11 

26 0.72 4 0.32 0.44 5 0.45 1.00 2 0.23 0.83 1 -0.10 0.48 1 0.08 

27 0.36 3 0.38 0.34 5 0.58 0.68 4 0.41 0.81 1 -0.11 0.56 1 -0.03 

28 0.26 3 0.33 0.21 5 0.44 0.99 2 0.39 0.50 1 -0.20 0.76 4 0.01 

29 0.58 5 0.34 0.21 5 0.43 0.89 4 0.46 0.30 5 -0.18 0.87 1 -0.03 

30 0.52 3 0.28 1.00 2 0.32 0.64 1 0.36 0.42 5 -0.17 0.62 1 -0.03 

 4 
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Table 4: Table 5: Results of The crossCross-validation results, which showing the robustness of the proposed bias correction 1 
methods. The spatial mean absolute error (SMAE) illustrates the mean absolute errors of all days at each station obtained by the 2 
marginal quantile mapping (QM), the expectation predictor (EP), bivariate copula quantile mapping (type BCQM-I and BCQM-3 
II), and the quantile search (QS). The last row of the SMAE is the average of SMAE over the study area. To compare the five bias 4 
correction methods, an error score (ES) is calculated based on the SMAE for each method at each weather station. A minimum 5 
value of the error score indicates for the minimum SMAE. The last row of the ES is the sum of scores for each method and indicates 6 
that the quantile search performs better best.  7 

   SMAE   ES 

 
Grid Id 

Station 

ID 
QM EP 

BCQM

-I 

BCQM

-II 
QS  Station QM EP 

BCQM-

I 

BCQM-

II 
QS 

J
u

n
e 

24 1,6 1.07 1.48 1.84 0.98 1.26 
 

1,6 2 4 5 1 3 

13 2 1.13 0.96 1.26 1.24 0.96 
 

2 3 1 5 4 2 

14 3 1.12 1.33 1.37 1.11 1.13 
 

3 2 4 5 1 3 

4 4,7 1.89 1.82 1.80 1.73 1.75 
 

4,7 5 4 3 1 2 

17 5 1.27 1.49 1.36 1.53 1.32 
 

5 1 4 3 5 2 

11 8 2.72 2.36 2.82 2.57 2.27 
 

8 4 2 5 3 1 

 

Average 1.53 1.57 1.74 1.53 1.45  Sum 17 19 26 15 13 

J
u

n
e 

 
1 0.9 1.7 1.0 0.9 1.4 

 
1 2 5 3 1 4 

 
2 1.1 1.1 1.0 1.5 1.1 

 
2 4 3 1 5 2 

 
3 1.0 1.1 1.0 1.1 0.9 

 
3 3 4 2 5 1 

 
4 0.7 0.8 0.9 0.8 0.7 

 
4 2 3 5 4 1 

 
5 1.3 1.2 2.3 1.4 1.0 

 
5 3 2 5 4 1 

 
Average 1.0 1.2 1.3 1.1 1.0 

 
Sum 14 17 16 19 9 

 8 
9 
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Table 5: Table 6: The correlation coefficient (CCr) between observed and bias-corrected values is calculated at each weather station. 1 
The bias-corrected values are obtained by the marginal quantile mapping, the expectation predictor, bivariate copula quantile 2 
mapping (type I and II), and the quantile search for all days. To compare the five bias correction methods, a correlation score (CS) 3 
is calculated based on the CC r for each method at each weather station. A minimum value of the error score indicates for the 4 
minimum CCr. The last row of the ES is the sum of scores for each method and indicates that the quantile search performs better 5 
best.  6 

   CCr   CS 

 
Grid Id Station -QM EP 

BCQM

-I 

BCQM

-II 
QS  Station QM EP 

BCQM-

I 

BCQM-

II 
QS 

J
u

n
e 

24 1,6 0.91 0.90 0.89 0.91 0.88  1 4 3 2 5 1 

13 2 0.89 0.91 0.87 0.86 0.90  2 3 5 2 1 4 

14 3 0.89 0.92 0.88 0.88 0.92  3 3 4 1 2 5 

4 4,7 0.75 0.82 0.74 0.78 0.79  4 2 5 1 3 4 

17 5 0.89 0.87 0.89 0.83 0.90  5 4 2 3 1 5 

11 8 0.20 0.26 0.18 0.25 0.29   2 4 1 3 5 

  
      

Sum 18 23 10 15 24 

J
u

n
e 

 
1 0.88 0.81 0.87 0.88 0.87  1 4 1 2 5 3 

 
2 0.95 0.92 0.94 0.93 0.92  2 5 1 4 3 2 

 
3 0.92 0.92 0.91 0.90 0.94  3 4 3 2 1 5 

 
4 0.96 0.96 0.94 0.95 0.97  4 3 4 1 2 5 

 
5 0.89 0.91 0.78 0.88 0.94  5 3 4 1 2 5 

  
      

Sum 19 13 10 13 20 

 7 
  8 
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Table 6: Table 7: For investigating the performance of each method to reproduce the high moments of the marginal distribution, 1 
the moment mean relative error (MMRE) is calculated. To compare the five bias correction methods, an error score (ES) is 2 
calculated based on the MMRE for each method at each weather station. A minimum value of the error score indicates for the 3 
minimum MMRE. The last row of the ES is the sum of scores for each method and indicates that the quantile searchnew methods 4 
perform s best better.  5 

  MMRE   ES 

 
Moment QM EP 

BCQM

-I 

BCQM

-II 
QS  Moment QM EP 

BCQM-

I 

BCQM-

II 
QS 

J
u

n
e 

Mean 0.04 0.03 0.05 0.04 0.02  Mean 4 2 5 3 1 

Standard 

deviation 
0.67 0.78 0.56 0.61 0.69  

Standard 

deviation 
3 5 1 2 4 

Coefficient 

of variation  
0.66 0.78 0.55 0.61 0.69  

Coefficient 

of variation 
3 5 1 2 4 

Skewness 1.38 1.14 1.21 0.96 1.11  Skewness 5 3 4 1 2 

Kurtosis 0.35 0.27 0.36 0.40 0.34  Kurtosis 3 1 4 5 2 

       Sum 18 16 15 13 13 

J
u

n
e 

Mean 0.01 0.01 0.01 0.02 0.01  Mean 3 1 4 5 2 

Standard 

Deviation 
0.41 0.48 0.69 0.31 0.14  

Standard 

Deviation 
3 4 5 2 1 

Skewness 1.74 1.07 1.73 1.60 0.43  Skewness 5 2 4 3 1 

Kurtosis 0.20 0.21 0.24 0.22 0.08  Kurtosis 2 3 5 4 1 

 
    

  Sum 13 10 18 14 5 

 6 

  7 
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 1 

 2 
 3 

Figure 1: One bivariate copula describes dependence structure between forecasted variable and covariate (a), and the second 4 
describes dependence structure between observed variable and covariate (b). The bivariate copula quantile mapping (BCQM) is 5 
substituting the conditional quantile 𝒑𝒖𝟐|𝒖𝒄𝒐𝒗𝒂𝒓𝒊𝒂𝒕𝒆

 from (a) into  𝑪𝒖𝒄𝒐𝒗𝒂𝒓𝒊𝒂𝒕𝒆
(𝒖𝟏) in (b). 𝒖𝐜𝐨𝐯𝐚𝐫𝐢𝐚𝐭𝐞 is the marginal of either elevation or 6 

nearest neighbour in BCQM-I and BCQM-II, respectively.  7 

 8 

Figure 2: The conditional quantile 𝒑𝒖𝟏|𝒖𝒄𝒐𝒗𝒂𝒓𝒊𝒂𝒕𝒆
 and marginal quantile  𝒖̂𝟏 of observed variable are estimated using BCQM-I and 9 

BCQM-II at an unvisited location. The quantile search (QS) generates a variable 𝑼𝟏 and the bivariate copula 𝑪̂𝒖𝒄𝒐𝒗𝒂𝒓𝒊𝒂𝒕𝒆
(𝒖𝟏)  is re-10 

estimated minimizing the error between the estimated marginal quantile 𝒖̂𝟏 and the true marginal quantile 𝒖𝟏 at weather stations.   11 
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 1 
Figure 1: Figure 3: Study Area is located in Qazvin, Iran.  Theis area covers the Qazvin irrigation network with a total area of 3307 2 
km2 km2 that is composed of agricultural fields, dominated by the growing of winter and summer crops, urban area, bare soil and 3 
natural vegetation. Weather stations are sparse and the minimum and maximum distance between stations are 13 and 78 km, 4 
respectively. For experimentation in this study, a sample subset of 3 × 8 grid points of ECMWF dataset is selected at 0.125º lat/lon 5 
distances.  6 
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Figure 2:  Figure 4: Time series of the observed and the forecasted values at each station in June 2014. The observed values are daily 2 
air temperature from weather stations and the forecasted values are daily air temperature from ECMWF at same locations. This 3 
figure shows the underestimation in ECMWF as well as spatial and temporal variability of bias.   4 
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Figure 3: Figure 5: Scatterplot of between the observed and the forecasted values at each station during June 2014. The observed 2 
values are daily air temperature from weather stations and the forecasted values are daily air temperature from ECMWF. at same 3 
locations. Red points in the scatterplot denote the outliers.  4 
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Figure 4: Figure 6: Bias between the The sample moments of the observed and forecasted marginals variables at each moment day 2 
of time series in June 2014. The observed values are daily air temperature from weather stations and the forecasted values are daily 3 
air temperature from ECMWF at same locations.  4 
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Figure 5: Figure 7: The empirical marginal quantiles values 𝒖𝟏  and 𝒖𝟐  and the fitted polynomial spline for the observed and 2 
forecasted air temperature for at first day of March and June 1st 2014.  3 
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 1 
Figure 6: The spatial variability of the observed and the bias-corrected values comparing with the forecasted values over the study 2 
area in March 2014. The observed values are daily air temperature from five weather station, the bias-corrected values are the result 3 
of the bias correction methods and the forecast values are daily air temperature from ECMWF. For experimentation in this study, 4 
a sample subset of 3 × 8 grid points of ECMWF dataset is selected at 0.125º lat/lon distances. 5 
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Figure 7:  2 
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Figure 8: The spatial variability of the observed and the bias-corrected values comparing with the forecasted values over the study 2 
area for three selected days in June 2014. The observed values are daily air temperature from five eight weather stations, the bias-3 
corrected values are the result of the bias correction procedures and the forecast values are daily air temperature from ECMWF. 4 
For experimentation in this study, a sample subset of 3 × 8 grid points of ECMWF dataset is selected at 0.125º lat/lon distances. 5 


