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Abstract. Data retrieved from global weather forecast systems are typically biased with respect to measurements at local 

weather stations. This paper presents three copula-based methods for bias correction of daily air temperature data derived from 

the European Centre for Medium-range Weather Forecasts (ECMWF). The aim is to predict conditional copula quantiles at 

different unvisited locations, assuming spatial stationarity of the underlying random field. The three new methods are: bivariate 

copula quantile mapping (types I and II), and a quantile search. These are compared with commonly applied methods, using 10 

data from an agricultural area in the Qazvin Plain in Iran containing five weather stations. Cross-validation is carried out to 

assess the performance. The study shows that the new methods are able to predict the conditional quantiles at unvisited 

locations, improve the higher order moments of marginal distributions, and take the spatial variabilities of the bias-corrected 

variable into account. It further illustrates how a choice of the bias correction method affects the bias-corrected variable and 

highlights both theoretical and practical issues of the methods. We conclude that the three new methods improve local 15 

refinement of weather data, in particular if a low number of observations is available. 

1 Introduction 

Weather stations are often sparse and usually located at irregular positions. If their data are used for crop growth simulations, 

then their results at unvisited locations are likely to be uncertain. A solution to this problem is to use weather data from a 

weather forecast system at each location. A modern and reliable weather forecast system is commonly composed of dynamical 20 

models, data assimilation methods and a product delivery system (Persson 2013). The coarse resolution of models, mutual 

dependence of weather parameters, and variability of these parameters in space and time, however, result in system 

uncertainties of the obtained weather data (Dee et al. 2011; Durai and Bhradwaj 2014). The uncertainties propagate as they are 

further applied, e.g. in hydrological models that increasingly use such data as input. This requires the data to be corrected 

before being used.  25 

Bias is defined as the systematic underestimation or overestimation of a global weather forecast system with respect to local 

measurements from weather stations (Persson 2013; Mao et al. 2015). Various bias correction methods have been proposed in 

the literature: linear-scaling factor methods (Lenderink et al. 2007), nonlinear methods (Lafon et al. 2013), and quantile 

mapping methods (Ines and Hansen 2006). These methods are able to correct for bias in the mean, but they do not consider 
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other moments of a probability distribution. Currently, the bivariate Gamma and empirical distributions are specifically used 

for bias correction of precipitation data and the Gaussian distribution for bias correction of temperature data. A limitation of 

this approach is that the same distributions families are used to estimate both the marginal and the multivariate distributions 

(Genest and Favre 2007). For this reason, we turn to copulas.  

A copula joins a multivariate distribution to its univariate marginals, based upon Sklar’s theorem (Sklar 1973; Nelsen 2006). 5 

Copulas describe the complex dependence structure between variables independently from the marginal distributions (Gräler 

and Pebesma 2011). Recently, copula-based methods have been developed for deriving bias-corrected weather data. Here, a 

conditional distribution describes the dependence structure between weather forecast data and measurements at weather 

stations. Their estimated quantiles are transformed into bias-corrected weather data.  

A bias correction method proposed by Laux et al. (2011) employed a bivariate conditional copula distribution for the 10 

precipitation time series retrieved from a regional climate model. Mao et al. (2015) investigated daily precipitation data and 

showed that a copula-based bias correction performs better than quantile mapping. Vogl et al. (2012) proposed the “Multiple 

Theta” and the “Maximum Theta” approaches for bias correction of rainfall data. So far, copulas have mainly been applied to 

precipitation time series retrieved from regional climate models. Observed weather data, in contrast, are provided at various 

temporal resolutions, whereas bias correction is often assumed to be temporally stationary. This means that they are also valid 15 

for future conditions (Teutschbein and Seibert 2012).  

This paper presents three new methods based on the copula concept: bivariate copula quantile mapping (types I and II), and 

quantile search. The new methods allow for estimating different conditional quantiles at different unvisited locations for each 

time step of a time series. Another aim is to evaluate these methods to predict the spatial variability of the bias-corrected daily 

air temperature at unvisited locations. In addition, this paper compares available bias correction methods, which are marginal 20 

quantile mapping, expectation predictor and single quantile predictor. The expectation and single quantile predictors are based 

on the bivariate conditional copula. The aim is to provide a review of these methods for bias correction of the daily air 

temperature data when relatively low number of observations are available.  

The structure of this paper is as follows. The concept of copula and the methods of bias correction are presented in Sect. 2. 

The study area and data are introduced in Sect. 3. The results of bias correction methods for the study area are described in 25 

Section 4, followed by the discussion and conclusion in Sect. 5 and Sect. 6.  

2 Method 

2.1 Copulas  

A copula is a multivariate cumulative distribution function that describes the dependence structure between variables. This 

function is unique if the marginals are continuous functions (Nelsen 2006; Vogl et al. 2012). According to Sklar’s theorem, 30 

the joint multivariate distribution H of m variables Zi equals a copula C of m variables ui as:  

𝐻(𝑧1, … , 𝑧𝑚) = 𝐶(𝑢1, … , 𝑢𝑚).           (1) 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2017-93, 2017
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 24 February 2017
c© Author(s) 2017. CC-BY 3.0 License.

Geoff
Text Box
by whom?

Geoff
Highlight

Geoff
Callout
ref?

Geoff
Highlight

Geoff
Highlight

Geoff
Text Box
where is 'here'? who is doing this?

Geoff
Highlight

Geoff
Callout
methods' ability

Geoff
Highlight

Geoff
Highlight

Geoff
Text Box
ungauged?

Geoff
Callout
the proposed methods with

Geoff
Callout
a

Geoff
Callout
s



3 

 

𝑢𝑖 = 𝐹𝑖(𝑧𝑖),         𝑢𝑖  ∈ [0,1].           (2) 

where 𝐹𝑖  is the marginal distribution function. A bivariate copula can describe several dependence structures: the spatial 

dependence structure between two variables at two different locations in space or at two different points in time; the spatio-

temporal dependence structure between two variables at different points in time and space; the dependence structure between 

two variables at one point in time and space. A bivariate conditional copula  𝐶𝑢2
𝑡 (𝑢1) is often used to correct for bias by 5 

describing the dependence structure between two variables at one point in time and space, where u1 is treated as “true” variable 

and u2 is biased variable. Several copula families have been developed to capture multivariate joint distributions such as the 

Gaussian, the Student’s t, the Clayton, the Gumbel and the Frank families (Nelsen 2006). These families mainly differ in the 

way the tail dependence structure is described (Table 1) (Joe 1993; Manner 2007). 

2.2 Copula-based bias correction method 10 

The bias at time t and location s is defined as the difference between the measurements from weather stations denoted by 𝑍1, 

and weather forecasts denoted by 𝑍2:  

𝑍1 = 𝑍2 + 𝐵𝑖𝑎𝑠.            (3) 

The value of the bias is predicted indirectly in copula-based bias correction methods. A bivariate conditional copula 𝐶𝑢2
𝑡 (𝑢1) 

for two variables at one point in space and time, denoted by 𝑍1 and 𝑍2, is defined as (Nelsen 2006):  15 

𝑃(𝑍1 ≤ 𝑧1|𝑍2 = 𝑧2) =  𝐶𝑢2
𝑡 (𝑢1) = 𝐶𝑡(𝑢1|𝑢2) =

𝜕 ∁𝑡(𝑢1,𝑢2)

𝜕𝑢2
= 𝑝𝑢1

, 𝐶: [0,1]2 → [0,1].    (4) 

where 𝑢1 and 𝑢2 are empirical marginal quantiles. Throughout, the functions and variable vary over space and time; s refers 

to a location and t refers to single moment in time. We assumed spatial stationarity to estimate 𝐶𝑡. This assumption is justified 

as the dependence structure between the observed and the forecasted variables is studied in a relatively small area and the 

dependence structures are thus unlikely to change in a non-stationary way.   20 

Empirical marginal distributions 𝑢1 and 𝑢2 are obtained using the following rank-order-transformation: 

𝑢𝑖 =
rank(𝑍𝑖)

𝑘+1
.             (5) 

where k denotes the number of available data for 𝑍𝑖. We denote the transformed variables by 𝑢1 and 𝑢2 for the conditioned 

and conditioning variables, which are now approximately uniformly distributed on [0, 1]. Extreme values that possibly exist 

in the observations, however, are smoothed and hence the extreme values cannot occur at unvisited locations after this 25 

transformation. To solve for this problem and to obtain a better approximation of the marginal distribution function at unvisited 

locations, a polynomial is fitted to the pairs (𝑧1, 𝑢1). Yet, this approach is also prone to uncertainty because the polynomial is 

fitted to a low number of observed values. 

To further proceed, a bivariate copula is fitted to the marginal quantiles u1 and u2 at weather stations for each time step. We 

use the Student’s t (Demarta and McNeil 2005), Gaussian, the Clayton, the Gumbel and the Frank families (Joe 1993), as these 30 

families are sufficiently flexible to capture the dependence structures of the conditioned and conditioning variables pairs (u1, 
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u2). Note that a bivariate copula has one parameter, except the Student’s t family that has two parameters: one for the correlation 

and one for the degrees of freedom (Table 1). To estimate the parameters for each family, we apply maximum likelihood 

estimation, using starting values obtained by Kendall’s , being a measure of association between variables (Nelsen 2006). 

Based upon their results, the most suitable family is selected according to Akaike’s Information Criteria (AIC) (Akaike 1974). 

In copula-based bias correction methods, the conditional quantile 𝑝𝑢1
 needs to be predicted to derive the marginal quantile 5 

�̂�1 as well as the realization of the random variable �̂�1. The solution depends upon the application, i.e. �̂�1 has to be predicted 

at the unvisited location in space, at the unobserved period in time or both. Incorporating temporal/spatial information or 

spatio-temporal information of available data to predict the conditional quantile then likely affects selection of a suitable 

method. 

2.3 Realization of random variable �̂�𝟏 10 

The purpose of the bias correction method is to predict the bias-corrected values at unvisited locations. This section describes 

briefly available methods to obtain the realizations of the bias-corrected variable �̂�1 and compares them to the three newly 

developed methods. 

2.3.1 Marginal quantile mapping 

A comprehensive study carried out by Teutschbein and Seibert (2012) showed that the quantile mapping method performs best 15 

among the classical bias correction methods and it can easily be implemented. It can reduce bias in the first two moments of a 

probability distribution. It is, however, sensitive to the number of quantile divisions when using an empirical probability 

distribution. For this method, several names can be found in the literature, such as probability mapping, CDF matching, 

quantile-quantile mapping. Here, we call this method as marginal quantile mapping (MQM) to specify the type of cumulative 

distribution function in the mapping and compare it to the copula-based bias correction methods. In the marginal quantile 20 

mapping, a single value �̂�1as a realization of the random variable �̂�1 is obtained as: 

�̂�1 = (𝐹1
𝑡)−1(𝐹2

𝑡(z2)).            (6) 

The idea of MQM is that there is a perfect dependence between variables 𝑢1 and 𝑢2. This underlying assumption, however, is 

hard to be fulfilled, due to the complexity of the dependence structure between measurements and forecasted data. 

2.3.2 Expectation predictor  25 

The conditional expectation is the optimal predictor, in the sense that it minimize the Bayes risk (Cressie 1993). It can be either 

linear or nonlinear in 𝑍1. A single value �̂�1(𝑚𝑒𝑎𝑛) as a realization of the random variable �̂�1
𝑡,𝑠

 is obtained using the conditional 

expectation (Bárdossy and Li 2008): 

�̂�1(𝑚𝑒𝑎𝑛) = 𝐸[𝑧1| 𝑧2] = ∫ 𝑍1. 𝑓𝑡(𝑍1|𝑍2)𝑑𝑍1𝑧1
= ∫ (𝐹1

𝑡)−1(𝑢1). 𝑐𝑡(𝑢1|𝑢2)𝑑𝑢1
1

0
.     (7) 

where 𝑐𝑡 is the conditional copula density function. In the case of constructing bivariate copulas, it can be shown that:  30 
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 𝑐𝑡(𝑢1|𝑢2) = 𝑐𝑡(𝑢1, 𝑢2) =
𝜕2∁𝑡(𝑢1,𝑢2)

𝜕𝑢1𝜕𝑢2
.         (8) 

The expectation predictor (EP) is mostly used for copulas to predict the value at an unvisited location in space (Bárdossy and 

Li 2008) or to predict the value at an unvisited location in space and time (Gräler and Pebesma 2011) using a large number of 

observations. In copula-based bias correction methods, however, spatial variability around unvisited locations faces the 

smoothing effect of EP. Another drawback concerns the marginal quantile  �̂�1 . The conditional expectation is either an 5 

increasing or a decreasing function of the conditioning variable if the dependence is positive or negative, respectively. 

Therefore, after applying EP, the empirical marginal quantile �̂�1 equals 𝑢2 or 1 − 𝑢2.  

2.3.3 Marginal transformation based on a single quantile  

The conditional quantile 𝑝𝑢1
 specifies that the conditioned variable 𝑍1 takes a value for a given conditioning variable 𝑍2. To 

apply the marginal transformation based on a single quantile method, first, the same quantile 𝑝𝑢1
for all locations is used to 10 

derive the marginal quantile �̂�1, by applying the inverse transformation of the copula (𝐶𝑡)−1:  

�̂�1 = (𝐶𝑡)−1(𝑝𝑢1
|𝑢2).             (9) 

Then the realization of the random variable �̂�1 is obtained by applying the inverse transformation of its marginal distribution 

(𝐹1
𝑡)−1 (Nelsen 2006):   

�̂�1 = (𝐹1
𝑡)−1(�̂�1).              (10) 15 

As the full conditional distribution of variable of interest is derived, any quantiles 𝑝𝑢1
 can be used for instance, the median 

value of �̂�1 can be obtained when the quantile 𝑝𝑢1
 is 0.5 for all locations. In this method, the question can be posed which 

quantile 𝑝𝑢1
best suits for the corrected variable at unvisited locations.  

2.3.4 Simulation of conditional quantile  

In simulation of conditional quantiles, realizations of the random variable �̂�1 are obtained by generating independent variates 20 

𝑢2 and 𝑝𝑢1
 uniform on [0,1]2 (Salvadori et al. 2007; Nelsen 2006).  These variates are used in Eq. (9) to obtain samples �̂�1. 

These samples are transformed to obtain realizations of the random variable �̂�1 by applying the inverse transformation of the 

marginal distribution in Eq. (10). Here, to obtain a single value for air temperature, a choice for either the mean, or the median 

or the mode of a simulation provides a single value �̂�1. In the literature, the mean value of the simulations is considered as a 

single realization (Laux et al. 2011; Vogl et al. 2012). The number of samples in the simulations, however, influences the 25 

simulation of conditional quantiles. The mean and the median of the simulations are equal to the mean and the median as 

derived from the conditional copulas using methods 2.3.2 and 2.3.3 when choosing large number of the samples in the 

simulation (Mao et al. 2015).  
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2.3.5 Bivariate copula quantile mapping  

This section introduces new bias correction methods including a covariate to consider the spatial structure of the air temperature 

at unvisited locations. The bivariate copula quantile mapping (BCQM) is a two dimensional quantile mapping method and 

relies on two bivariate copulas incorporating the dependence of the covariate and variables of interest (Verhoest et al. 2015). 

This method can be extended to multi-dimensional quantile mapping using more than one covariate for the air temperature. 5 

2.3.5.1 BCQM-type I 

The variables 𝑅 and 𝑢𝑅 are defined as: 

𝑅 = √(𝑥𝑠)2 + (𝑦𝑠)2 + (𝑒𝑠)2.           (11) 

𝑢𝑅 =
rank(𝑅)

𝑘+1
.             (12) 

where 𝑥𝑠 and 𝑦𝑠 are the coordinates (in meters) in the universal transverse Mercator (UTM) coordinate system and 𝑒𝑠  is the 10 

elevation (in meter) of the unvisited locations. The variable 𝑅 is treated as a random variable due to uncertainty in positioning 

and elevation. It indicates effects of land cover and elevation on the air temperature over the study area. The idea of this 

mapping is to use 𝑅  and the air temperature to estimate copulas. Then, the conditional quantile 𝑃(𝑍2 ≤ 𝑧2|𝑅 = r) at an 

unvisited location is used to estimate the conditional quantile 𝑃(𝑍1 ≤ 𝑧1|𝑅 = 𝑟) at the same location. For this quantile 

mapping, two conditional copulas  𝐶𝑢𝑅
𝑡 (𝑢1) and  𝐶𝑢𝑅

𝑡 (𝑢2)  are constructed as: 15 

𝑃(𝑍1 ≤ 𝑧1|𝑅 = 𝑟) =  𝐶𝑢𝑅
𝑡 (𝑢1) = 𝐶𝑡(𝑢1|𝑢𝑅) =

𝜕 ∁𝑡(𝑢𝑅,𝑢1)

𝜕𝑢𝑅
= 𝑝𝑢1

,      𝐶: [0,1]2 → [0,1].      (13)  

𝑃(𝑍2 ≤ 𝑧2|𝑅 = r) =  𝐶u𝑅
𝑡 (𝑢2) = 𝐶𝑡(𝑢2|𝑢𝑅) =

𝜕 ∁𝑡(𝑢𝑅,𝑢2)

𝜕𝑢𝑅
= 𝑝𝑢2

,      𝐶: [0,1]2 → [0,1].      (14) 

where 𝑢1 and 𝑢2 are calculated following Eq. (5). Substituting the quantiles 𝑝𝑢2
 for 𝑝𝑢1

 in Eq. (13) yields the realization of the 

random variable �̂�1 as it is explained in Eq. (9) and (10).  

2.3.5.2 BCQM-type II 20 

The idea of the BCQM-type II method is to use nearest observed neighbour to an unvisited location to estimate copulas. Then, 

the conditional quantile 𝑃(𝑍2 ≤ 𝑧2
𝑠|𝑍2 = 𝑧2

𝑛𝑒𝑖𝑔ℎ
)  at an unvisited location is used to estimate the conditional quantile 

𝑃(𝑍1 ≤ 𝑧1
𝑠|𝑍1 = 𝑧1

𝑛𝑒𝑖𝑔ℎ
) at the same location. For this quantile mapping, two bivariate conditional copulas  𝐶

𝑢1
𝑛𝑒𝑖𝑔ℎ

𝑡 (𝑢1
𝑠) and 

 𝐶
𝑢2

𝑛𝑒𝑖𝑔ℎ
𝑡 (𝑢2

𝑠)  are constructed as: 

𝑃(𝑍1 ≤ 𝑧1
𝑠|𝑍1 = 𝑧1

𝑛𝑒𝑖𝑔ℎ
) = 𝐶

𝑢1
𝑛𝑒𝑖𝑔ℎ

𝑡 (𝑢1
𝑠) = 𝐶𝑡(𝑢1

𝑠|𝑢1
𝑛𝑒𝑖𝑔ℎ

) =
𝜕 ∁𝑡(𝑢1

𝑛𝑒𝑖𝑔ℎ
,𝑢1

𝑠 )

𝜕𝑢1
𝑛𝑒𝑖𝑔ℎ = 𝑝𝑢1

, 𝐶: [0,1]2 → [0,1].  (15) 25 

𝑃(𝑍2 ≤ 𝑧2
𝑠|𝑍2 = 𝑧2

𝑛𝑒𝑖𝑔ℎ
) = 𝐶

𝑢2
𝑛𝑒𝑖𝑔ℎ

𝑡 (𝑢2
𝑠) = 𝐶𝑡(𝑢2

𝑠|𝑢2
𝑛𝑒𝑖𝑔ℎ

) =
𝜕 ∁𝑡(𝑢2

𝑛𝑒𝑖𝑔ℎ
,𝑢2

𝑠 )

𝜕𝑢2
𝑛𝑒𝑖𝑔ℎ = 𝑝𝑢2

, 𝐶: [0,1]2 → [0,1].   (16) 
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where 𝑢1 and 𝑢2 are calculated following Eq. (5). The copula  𝐶
𝑢𝑖

𝑛𝑒𝑖𝑔ℎ
𝑡 (𝑢𝑖

𝑠)  is the distribution of variable of interest at unvisited 

location, conditioned on its nearest neighbour. Substituting the quantiles 𝑝𝑢2
 for 𝑝𝑢1

 in Eq.(15) yields the realization of the 

random variable �̂�1 as it is explained in Eq. (9) and (10). 

2.3.6 Quantile search  

The quantile search (QS) method allows the combination of different criteria in estimating the marginal quantiles 𝑢1  at 5 

unvisited locations. A realization of the random variable �̂�1
𝑡,𝑠

 is obtained using a marginal transformation in Eq. (10) based on 

the estimated quantiles at unvisited locations in Eq. (9). As the marginal quantile 𝑢1 lies in the range [0, 1], it can be estimated 

using a search algorithm by means of maximizing a fitness function f as: 

�̂�𝑢1
= �̂�∗(�̂�1);     ∗∶ {𝑢2, 𝑢𝑅, 𝑢1

𝑛𝑒𝑖𝑔ℎ
}.         (17) 

 𝑅𝐸∗ =
|𝑝𝑢1−𝑝𝑢1|

𝑝𝑢1

 ;  𝑀𝑅𝐸∗ =
1

𝑛
∑ (𝑅𝐸∗

𝑠)𝑠=𝑛
𝑠=1  .          (18)  10 

𝑓(�̂�1) = − ∑ 𝑤∗ × 𝑀𝑅𝐸∗.           (19)  

Here �̂�𝑢1
and �̂�1 are conditional and marginal quantiles estimated by the quantile search, 𝑤∗ is arbitrary weight set equal to 

0.33 in this study, 𝑀𝑅𝐸∗ is the mean relative error, n is number of weather stations, and 𝑅𝐸𝑢2
 is the relative error between two 

quantiles of 𝐶𝑢2
𝑡 (𝑢1) and �̂�𝑢2

𝑡 (�̂�1) as explained in the Sect. 2.2. 𝑅𝐸𝑢𝑅
 is the relative error between two quantiles of 𝐶𝑢𝑒

𝑡 (𝑢1) 

and  �̂�𝑢𝑒
𝑡 (�̂�1) as explained in the Sect. 2.3.5.1. 𝑅𝐸

𝑢1
𝑛𝑒𝑖𝑔ℎ  is the relative error between two quantiles of  𝐶

𝑢1
𝑛𝑒𝑖𝑔ℎ

𝑡 (𝑢1) 15 

and �̂�
𝑢1

𝑛𝑒𝑖𝑔ℎ
𝑡 (�̂�1) as explained in the Sect. 2.3.5.2. The 𝑀𝑅𝐸 ensures that the prediction’s errors are minimized at the weather 

stations. The 𝑅𝐸∗ allows us to ensure that dependence structure of the observed and forecasted variables as well as the observed 

variable and covariates are considered in the finding the marginal quantile. Values of the fitness function 𝑓(�̂�1) are calculated 

using initial random values for �̂�1 and the search algorithm improve the quantile �̂�1 in an iterative process. Therefore, the 

fitness values should well represent the estimation errors and the dependence structures at unvisited locations. Here, we applied 20 

a genetic algorithm for doing the search. 

2.4 Evaluation of the copula-based bias correction methods 

The newly developed methods are applied to each time step of the air temperature time series. These time steps represent 

different bias and dependencies structures between the observed and forecasted variables. The observations from weather 

stations are used for cross-validation to quantify the robustness of the each method. To this end, one observation 𝑧1
𝑠,𝑡

 is removed 25 

from the dataset and the bias-corrected value �̂�1
𝑠,𝑡

 is calculated for this point using the reminder of the stations. This method is 

repeated for all stations. For each observation assigned to the one location s and time t, that is not included in the bias correction 

process, the absolute error (AE) is determined, using:  

𝐴𝐸𝑠,𝑡 = |�̂�1
𝑠,𝑡 − 𝑧1

𝑠,𝑡|.            (20) 
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The spatial mean absolute error (SMAE) is calculated at each weather station as: 

𝑆𝑀𝐴𝐸𝑠 =
1

𝑇
∑ (𝐴𝐸𝑠,𝑡).𝑡=𝑇

𝑡=1            (21) 

To compare the five bias correction methods, an error score (ES) is calculated based on the SMAE for each method at each 

weather station (Durai and Bhradwaj 2014). A minimum value of the error score indicates for the minimum SMAE. The error 

measures do not provide any spatial information of the bias-corrected variable. The idea behind the SMAE was to provide 5 

criteria when one can compare different methods. A low number of observations can hinder a deeper analysis. The overall 

prediction quality depends on a good model of the copula, a good fit of the marginal distributions as well as the number of the 

observations.  

In addition, the correlation coefficient (CC) between observed and bias-corrected values is calculated at each weather station 

as: 10 

𝐶𝐶𝑠 =
𝑐𝑜𝑣{𝑍1

𝑠,�̂�1
𝑠}

𝜎𝑍1
𝑠 𝜎�̂�1

𝑠
;     𝑍1

𝑠 = {𝑧1
𝑠,1, 𝑧1

𝑠,2, … , 𝑧1
𝑠,𝑇},     �̂�1

𝑠 = {�̂�1
𝑠,1, �̂�1

𝑠,2, … , �̂�1
𝑠,𝑇}.     (22) 

Where 𝑍1
𝑠 is the observation values and �̂�1

𝑠 is the biased-corrected values obtained by cross-validation. To compare the five 

bias correction methods, an correlation score (CS) is calculated based on the CC for each method at each weather station. A 

minimum value of the correlation score indicates for the minimum CC. 

For investigating the performance of each method to reproduce the high moments of the marginal distribution, the relative 15 

error 𝑅𝐸𝑚𝑖  is calculated as: 

𝑅𝐸𝑚𝑖,𝑡 =
|𝑚𝑖

𝑡−�̂�𝑖
𝑡|

|𝑚𝑖
𝑡|

.             (23) 

where 𝑚𝑖
𝑡 and �̂�𝑖

𝑡 are the ith order moment of the marginal distribution calculated using observed values 𝑧1 and bias-corrected 

values  �̂�1 at time t. The bias-corrected values �̂�1 are predicted where correction functions are estimated using the observed 

values and applied to the same locations (Lafon et al. 2013).  20 

The moment mean relative error (MMRE) is calculated at each weather station as: 

𝑀𝑀𝑅𝐸𝑚𝑖 =
1

𝑇
∑ (𝑅𝐸𝑚𝑖,𝑡).𝑡=𝑇

𝑡=1           (24) 

To compare the five bias correction methods, an error score (ES) is calculated based on the MMRE for each method and for 

each moment. A minimum value of the error score indicates for the minimum MMRE. 

The study was performed in the statistical computing environment and language R using the packages gstat (Pebesma 2004), 25 

copula (Kojadinovic and Yan 2010), spcopula (Gräler 2011), VineCopula (Brechmann and Schepsmeier 2013), GA (Scrucca 

2012) and the basic packages. 

3 Case study  

The study area is located between 36.30 and 35.99 latitudes (N) and 49.64 and 50.59 longitudes (E), with a total area of 3307 

km2 in the Qazvin plain, Iran (Figure 1). This area includes an irrigation network, agricultural fields, dominated by wheat, 30 
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barely, maize, sugar beet, summer crops and orchards, urban areas, bare soil and natural vegetation. Part of this area has been 

the pilot for a project aiming at development of a planning and monitoring system to support irrigation management of the 

Qazvin irrigation network (Sharifi 2013). One of the objectives of this project is to produce air temperature map from point 

measurements and apply it to crop growth simulations.  

Five weather stations (Table 2) were selected because they had a long range of air temperature measurements available and 5 

were well spread over the study area. Minimum and maximum distances between stations are 13 and 78 km, respectively 

(Figure 1). For all weather stations, the daily minimum and maximum air temperatures are available for the periods 1– 31 

March  and 1-30 June 2014, except for the second station on 20 March and 23 June and for the first station on 30 June. Daily 

air temperature is determined by averaging the minimum and maximum temperatures at each weather stations for each day.  

We used the operational forecast weather data provided by the European Centre for Medium-Range Weather Forecasts 10 

(ECMWF). All ECMWF data are available at 3-hourly and 6-hourly intervals from the ERA-Interim data assimilation system 

and can be retrieved for a 0.125º lat/lon grid points, corresponding to approximately 13.5 km in the meridional direction 

(Persson 2013). A sample subset of 3 × 8 grid points is selected for the periods 1– 31 March and 1– 30 June 2014 which covers 

the irrigation network (Figure 1).  

Due to the coarse spatial resolution of ECMWF data, there is an apparent mismatch between measurements obtained from 15 

weather stations and weather forecast data. To correct for bias in weather forecast data, either an observed value or the average 

of several observed values corresponds to a single grid point if distance between the station and the grid point is negligible. In 

the study area, however, many grid points do not contain an observation due to the relatively low number of weather stations. 

In order to obtain unbiased values, a bias correction method should be applied for these grid points before using the weather 

forecast data. 20 

4 Results 

This section presents the results, where the observed values are the daily air temperatures at five weather stations, forecasted 

values are the daily air temperatures obtained from ECMWF, and the bias-corrected values are the results of the bias correction 

methods (MQM, EP, BCQM-type I, BCQM-type II and QS) for twenty-four grid points during the periods 1– 31 March and 

1– 30 June 2014.  25 

4.1 Outlier and bias 

The graphical comparison of the observed and the forecasted time series of temperature as shown in Figure 2 identifies both 

bias and outliers. Abrupt changes in the trend correspond to the outliers (Aggarwal 2013). As can be seen, when there is a drop 

of the observed air temperature, the forecast system produces outliers. Figure 3 shows the scatterplot between the observed 

and the forecasted values at each weather station. For all stations, outliers occurred on days 8, 19, 22 and 31 in March. The 30 
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forecasted values are negative on days 22 and 31 in March. Since bias correction was applied separately for each day, there 

was no need to remove the outliers.  

In addition, the graphical comparison in Figure 2 reveals that the daily air temperature is underestimated by ECMWF. The 

extrapolation of climate information from uncertain measurements and time-varying bias in the ECMWF models and 

observations are associated with uncertainties in the forecasted data (Dee et al. 2011). The average of bias for all days is 3.4°C 5 

if the outliers (on the days 8, 19, 22 and 31) are ignored and 4.1°C in March and June, respectively. Figure 4 shows the mean, 

sample standard deviation, skewness and kurtosis for both observed and forecasted values at each day. This figure shows, in 

time, clearly visible bias in all moments of the marginal distribution. Classical bias correction methods are inadequate to 

improve all order moments of the marginal distribution (Lafon et al. 2013). In Sect. 4.3, we investigate how well the moments 

can be reproduced by the described methods.  10 

4.2 Marginal distributions and copulas 

In order to not affect the copula by the estimation of the marginal distribution functions, the empirical marginal values 𝑢1 and 

𝑢2 were calculated using the available data for both observed and forecasted air temperature for each day as mentioned in Sect. 

2.2. The empirical quantiles, however, are typically limited to the domain defined by the extreme values in the observations. 

A third degree polynomial was fitted to the empirical marginal quantiles 𝑢1 to extend the marginal quantiles towards the 15 

unvisited locations as well. The empirical marginal quantiles and the fitted polynomials are presented in Figure 5 for first day 

of March and June.  

The bivariate conditional copulas were fitted to the empirical marginal quantiles for each day. Following Sect. 2.2, five families 

were estimated at each day and the most suitable family was selected according to AIC. Table 3 shows the best families and 

Kendall’s  at each day in March and June. As can be seen, suitable families of the dependence between the observed and 20 

forecasted variables were non-Gaussian at most of days in March and Gaussian  at most of days in June and these families 

covered the range from negative to positive dependences. The selection of families, however, depends upon the number of 

observations and further research is needed to develop strategies to select them. In addition, as all five families were symmetric, 

alternative families can be investigated to better describe the dependencies. It must be mentioned that although many different 

families exist allowing for different dependence structures, the computational limitations may be introduced by the calculating 25 

the inverse of the conditional copula distribution. 

4.3 Cross-validation results and the bias-corrected values �̂�𝟏 

Applying the described methods to the same data allowed us to compare the different underlying definitions. Table 4 shows 

the cross-validation results in terms of the spatial mean absolute error (SMAE) between the observations and the bias-corrected 

values at each weather stations for five bias correction methods and their scores. A comparison between the newly developed 30 

methods BCQM-type I, BCQM-type II, QS, available copula-based method EP and classical bias correction method MQM 
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based upon the error scores (ES) has shown that QS performed best, followed by EP, MQM and BCQM-type I, BCQM-type 

II, in March and June. 

Table 5 shows the cross-validation results in terms of the correlation coefficient (CC) between the observations and the bias-

corrected values at each weather stations for five bias correction methods and their scores. A comparison between the newly 

developed methods BCQM-type I, BCQM-type II, QS, available copula-based method EP and classical bias correction method 5 

MQM based upon the correlation score (CS) has shown that QS performed best, followed by BCQM-type II, MQM, EP and 

BCQM-type I, in March and June. 

The first station has the largest temperature values in both March and June, the second and the fifth stations have the smallest 

temperature values in March, the third and the fifth stations have the smallest temperature values in June, among the five 

stations, at most of days. Since for all methods, the empirical marginal distributions were the same, the copulas were unable 10 

to capture the extreme values. In addition, the SMAE represents the uncertainties associated to horizontal distances, height 

differences, differences in land cover and vegetation coverage between the stations and the grid points.  

Table 6 shows the moment mean relative error (MMRE) between the observations and the bias-corrected values at each 

weather stations for five bias correction methods and their scores. A comparison between the newly developed methods 

BCQM-type I, BCQM-type II, QS, available copula-based method EP and classical bias correction method MQM based upon 15 

the error score (ES) has shown that QS performed best, followed by EP, BCQM-type II, MQM, and BCQM-type I, in March 

and June. 

The spatial variabilities of the bias-corrected variable at some days for all locations is shown in Figure 6 and Figure 7 for 

March and June, respectively. It can be seen that the spatial variabilities obtained by newly developed methods were much 

higher than by MQM and EP. MQM, BCQM-type I and BCQM-type II were unable to correct for bias at some locations. The 20 

smoothing effect of EP can be seen in days 6 and 13 in Figure 6, as well. The spatial variabilities of bias-corrected values 

obtained by MQM and EP follow the spatial variabilities of the forecasted values. QS performed better at the weather stations 

due to the fitness function in Sect. 2.3.7. How to analyse the spatial variability of the bias-corrected air temperature at unvisited 

locations is still a challenging question due to low number of observations.  

5 Discussion  25 

The dependence structure between the daily air temperature observed by the weather stations and forecasted by ECMWF was 

studied for bias correction. We utilized the concept of bivariate conditional copula to develop three new methods in the bias 

correction methods, as bivariate copulas are well understood and easy to estimate. We picked up the idea of the quantile 

mapping and adapted it to the bivariate conditional copula to develop the new methods BCQM-type I and BCQM-type II that 

allow estimating different conditional quantiles at different unvisited locations. The flexibility in the determining of the 30 

conditional quantiles makes the newly developed methods appealing for spatial variabilities at unvisited locations when low 

number of observations are available. The estimation of marginal distributions and copulas, however, are affected by the low 
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number of observations. In addition, the new quantile search QS was proposed to find the marginal quantiles that might benefit 

from a fitness function that does not only take into account the prediction errors, but also the spatial variabilities at the unvisited 

locations. Furthermore, our proposed methods utilized the flexibility of selecting different families and allowed for temporal 

variability of dependencies.  

We treated the available observations from five weather stations as a reference during the identification of bias and during the 5 

validation of the results. The horizontal distances, height differences and difference in land cover between the location of a 

station and the ECMWF grid point is associated with uncertainties. In addition, in the copula-based methods, where we used 

the AIC to select the suitable family for constructing the dependence between the forecasted and the observed variables, 

additional uncertainties present because the suitability of family depends on the availability of data and the probabilistic nature 

of the bias. Furthermore, based on the cross-validation results, the average of the mean absolute errors in all stations and all 10 

days appeared to be slightly more than 1°C for all proposed methods. As mentioned in Sect. 3, the bias-corrected air 

temperature can be used for crop growth simulation as well as determination of crop water requirement. The impact of air 

temperature variability on crop production is dependent on growing-season temperature and the optimum temperature for 

photosynthesis and biomass accumulation. Asseng et al. 2011 showed that, depending on the time and temperature, the 

variation in the average growing-season temperature could cause a significant reduction in wheat grain production. 15 

A practical advantage of the proposed methods is that they are not restricted to remove autocorrelation and heteroscedasticity 

in time series (Laux et al. 2011) and the time series of the air temperature at each station were successfully reproduced by 

applying the bias correction separately at each day. Another aspect is the ability of the new methods to reproduce the moments 

of the marginal distribution of the observed variable. Correction of the higher moments of the distribution is much more 

sensitive to the choice of the bias correction method, which needs to be investigated more in further studies. In addition, in the 20 

proposed methods, the empirical marginal distribution described the statistical properties of daily air temperature without the 

knowledge of theoretical form of the family’s distribution function. Furthermore, fitting a polynomial to the empirical marginal 

quantiles was beneficial to obtain the bias-corrected values at unvisited locations that were not limited to the domain defined 

by the extreme values in the observations. With respect to the newly described methods, although we applied the methods for 

correcting the bias, we highlight the potential and the use of the methods for the copula-based downscaling problems, as well. 25 

Moreover, the proposed methods have the potential to use the spatio-temporal information of the variable of interest in the 

bias correction process. The further comparison of the proposed methods and other bias correction methods e.g. triple 

collocation analysis (Stoffelen 1998) might help to assess the performance of the newly developed methods. 

Lack of spatial variability in the available copula-based bias correction methods motivated the research to develop new 

methods with the aim of estimating different conditional quantiles at different locations. The spatial variability of the air 30 

temperature, however, needs additional analysis, as the number of observations is small. Based on the available literature, 

estimating the confidence intervals is a common task to address the uncertainties in the copula-based methods. The 

applicability of confidence intervals, however, always depends on the availability of data and the nature of the real world 

problem. In addition, for the BCQM-type I and BCQM-type II methods it is assumed that the associations between the pair of 
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the bias-corrected variable and a covariate should obey the associations between the pair of the biased variable and that 

covariate. For QS method it is assumed that the fitness function fitted to the observations is an acceptable representation of 

fitness function at unvisited locations. In the case the underlying assumptions of these methods are hard to be fulfilled, 

alternatives are needed.  

6 Conclusions 5 

In this paper, we developed three copula-based bias correction methods with the aim of predicting different conditional 

quantiles at unvisited locations and compared them to available methods. They were applied to correct bias in the daily air 

temperature forecasts of ECMWF. To evaluate their performance, cross-validation was carried out with the observations from 

five weather stations.   

From this study, we conclude the following:  10 

 The new methods are beneficial for the local refinement of weather data if a low number of observations is available 

and one is interested in predicting the spatial variabilities of the weather parameter.  

 The new methods are advantageous if the bias-corrected variable has to be predicted separately at each time step of 

the time series.  

 Further research should focus on investigating the optimal number of observations for bias correction and on 15 

developing validation criteria. In both issues, the spatial variability and the error of the predictions in case of a low 

number of observations should be included.  
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Table 1: Five families are selected to describe the dependence structure between the conditioned and the conditioning variables in 

this study. A bivariate copula is fitted on the marginal values and the most suitable family is selected according to the Akaike 

Information Criteria for each day.  

Index Name Cθ(u,v) Property index 

1 Gaussian ∅𝑅(∅−1(𝑢), ∅−1(𝑣)); 𝑅 = [
1 𝜃
𝜃 1

] 1, 2, 6 

2 Student’s t 𝑡𝑅,𝜗 (𝑡𝜗
−1(𝑢), 𝑡𝜗

−1(𝑣)) ;  𝑅 = [
1 𝜃
𝜃 1

] ;  𝜗 = 𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑓𝑟𝑒𝑒𝑑𝑜𝑚 1, 2, 6 

3 Clayton [𝑚𝑎𝑥{(𝑢𝜃 + 𝑣𝜃 − 1), 0}]
−1
𝜃  1, 2,4,5,6 

4 Gumbel exp (−[(−𝑙𝑛𝑢)𝜃 + (−𝑙𝑛𝑣)𝜃]
1
𝜃) 1,2,3,6 

5 Frank 
−1

𝜃
ln (1 +

(𝑒−𝜃𝑢 − 1)(𝑒−𝜃𝑣 − 1)

𝑒−𝜃 − 1
) 1,2,6 

1 

P
ro

p
er

ty
 

Permutation symmetry 

2 Symmetry about medians 

3 Extreme value Copula 

4 Lower tail dependence 

5 Upper tail dependence 

6 Extendibility to Multivariate Copula 

Table 2: Five weather stations are selected due to the air temperature measurements available over the entire study area. For all 

weather stations, minimum and maximum air temperatures are available for the periods 1– 31 March  and 1-30 June 2014, except 5 
for the second station on 20 March and 23 June and for the first station on 30 June. 

Station ID Station name Latitude Longitude Elevation(m) Type 

1 Abeyk 36.05 50.52 1291 Climatology 

2 Magsal 36.13 50.12 1260 Climatology 

3 Nirougah 36.18 50.25 1318 Climatology 

4 Qazvin 36.25 50.05 1278 Synoptic 

5 Takestan 36.05 49.65 1283 Synoptic 
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Table 3: Best fitting family and Kendall’s  at each day for bivariate conditional copulas 𝑪𝒖𝟐

𝒕 (𝒖𝟏). The non-Gaussian bivariate 

copulas dominate the non-spatial dependence structure of the observed and forecasted variables at most of the days in March.  

 March June 

Day Best Kendall’s  Best Kendall’s  

1 Gaussian -0.39 Gaussian 0.52 

2 Clayton 0.56 Gumbel 0.67 

3 Gaussian -0.40 Gaussian 0.74 

4 Frank 0.51 Gaussian 0.24 

5 Frank 0.63 Gumbel 0.38 

6 Gaussian 0.16 Clayton 0.63 

7 Gumbel 0.60 Gumbel 0.53 

8 Clayton 0.40 Gaussian 0.13 

9 Gaussian -0.46 Gumbel 0.40 

10 Gaussian 0.34 Gaussian -0.45 

11 Gumbel 0.46 Gaussian -0.52 

12 Gaussian 0.35 Gaussian -0.58 

13 Gaussian 0.10 Gaussian -0.29 

14 Frank -0.34 Clayton 0.41 

15 Clayton 0.21 Gumbel 0.63 

16 Clayton 0.41 Gumbel 0.73 

17 Frank -0.52 Gaussian -0.61 

18 Clayton 0.30 Gaussian -0.51 

19 Gumbel 0.72 Gaussian -0.47 

20 Gumbel 0.45 Gaussian 0.53 

21 Gaussian -0.40 Gaussian -0.44 

22 Gaussian -0.53 Gumbel 0.52 

23 Gumbel 0.54 Gumbel 0.42 

24 Gaussian -0.32 Gumbel 0.59 

25 Gaussian -0.52 Gumbel 0.53 

26 Gumbel 0.60 Gaussian 0.45 

27 Clayton 0.73 Gumbel 0.66 

28 Gaussian 0.61 Gumbel 0.61 

29 Gaussian -0.15 Gaussian -0.42 

30 Gaussian 0.12 Gaussian -0.68 

31 Clayton 0.50   
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Table 4: The cross-validation results, which show the robustness of the proposed bias correction methods. The SMAE illustrates the 

mean absolute errors of all days at each station obtained by the marginal quantile mapping, the expectation predictor, bivariate 

copula quantile mapping (type I and II), and the quantile search. The last row of the SMAE is the average of SMAE over the study 

area. To compare the five bias correction methods, an error score (ES) is calculated based on the SMAE for each method at each 

weather station. A minimum value of the error score indicates for the minimum SMAE. The last row of the ES is the sum of scores 5 
for each method and indicates that the quantile search performs better.  

  SMAE   ES 

 
Station MQM EP 

BCQM

-I 

BCQM

-II 
QS  Station MQM EP 

BCQM-

I 

BCQM-

II 
QS 

M
a

rc
h

 

1 1.7 1.5 1.6 1.7 1.5 
 

1 4 2 3 5 1 

2 1.1 1.3 1.2 1.6 1.2 
 

2 1 4 2 5 3 

3 1.0 0.9 1.0 0.9 0.8 
 

3 5 3 4 2 1 

4 1.5 1.2 2.0 1.4 0.6 
 

4 4 2 5 3 1 

5 1.9 1.2 2.5 1.6 1.0 
 

5 4 2 5 3 1 

Average 1.4 1.3 1.6 1.5 1.0  Sum 18 13 19 18 7 

J
u

n
e 

1 0.9 1.7 1.0 0.9 1.4 
 

1 2 5 3 1 4 

2 1.1 1.1 1.0 1.5 1.1 
 

2 4 3 1 5 2 

3 1.0 1.1 1.0 1.1 0.9 
 

3 3 4 2 5 1 

4 0.7 0.8 0.9 0.8 0.7 
 

4 2 3 5 4 1 

5 1.3 1.2 2.3 1.4 1.0 
 

5 3 2 5 4 1 

Average 1.0 1.2 1.3 1.1 1.0 
 

Sum 14 17 16 19 9 
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Table 5: The correlation coefficient (CC) between observed and bias-corrected values is calculated at each weather station. The bias-

corrected values are obtained by the marginal quantile mapping, the expectation predictor, bivariate copula quantile mapping (type 

I and II), and the quantile search for all days. To compare the five bias correction methods, a correlation score (CS) is calculated 

based on the CC for each method at each weather station. A minimum value of the error score indicates for the minimum CC. The 

last row of the ES is the sum of scores for each method and indicates that the quantile search performs better.  5 

  CC   CS 

 
Station MQM EP 

BCQM

-I 

BCQM

-II 
QS  Station MQM EP 

BCQM-

I 

BCQM-

II 
QS 

M
a

rc
h

 

1 0.90 0.94 0.92 0.93 0.95  1 1 4 2 3 5 

2 0.92 0.92 0.88 0.94 0.88  2 4 3 1 5 2 

3 0.91 0.90 0.90 0.93 0.93  3 3 1 2 4 5 

4 0.84 0.90 0.82 0.87 0.97  4 2 4 1 3 5 

5 0.66 0.83 0.73 0.76 0.93  5 1 4 2 3 5 

 
      

Sum 11 16 8 18 22 

J
u

n
e 

1 0.88 0.81 0.87 0.88 0.87  1 4 1 2 5 3 

2 0.95 0.92 0.94 0.93 0.92  2 5 1 4 3 2 

3 0.92 0.92 0.91 0.90 0.94  3 4 3 2 1 5 

4 0.96 0.96 0.94 0.95 0.97  4 3 4 1 2 5 

5 0.89 0.91 0.78 0.88 0.94  5 3 4 1 2 5 

 
      

Sum 19 13 10 13 20 
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Table 6: For investigating the performance of each method to reproduce the high moments of the marginal distribution, the moment 

mean relative error (MMRE) is calculated. To compare the five bias correction methods, an error score (ES) is calculated based on 

the MMRE for each method at each weather station. A minimum value of the error score indicates for the minimum MMRE. The 

last row of the ES is the sum of scores for each method and indicates that the quantile search performs better.  

  MMRE   ES 

 
Moment MQM EP 

BCQM

-I 

BCQM

-II 
QS  Moment MQM EP 

BCQM-

I 

BCQM-

II 
QS 

M
a

rc
h

 

Mean 0.02 0.01 0.03 0.04 0.01  Mean 3 1 4 5 2 

Standard 

deviation 
0.49 0.35 0.61 0.49 0.10  

Standard 

deviation 
4 2 5 3 1 

Skewness 1.76 1.61 1.51 1.52 0.62  Skewness 5 4 2 3 1 

Kurtosis 0.39 0.32 0.38 0.34 0.15  Kurtosis 5 2 4 3 1 

       Sum 17 9 15 14 5 

J
u

n
e 

Mean 0.01 0.01 0.01 0.02 0.01  Mean 3 1 4 5 2 

Standard 

Deviation 
0.41 0.48 0.69 0.31 0.14  

Standard 

Deviation 
3 4 5 2 1 

Skewness 1.74 1.07 1.73 1.60 0.43  Skewness 5 2 4 3 1 

Kurtosis 0.20 0.21 0.24 0.22 0.08  Kurtosis 2 3 5 4 1 

 
    

  Sum 13 10 18 14 5 

 5 
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Figure 1: Study Area is located in Qazvin, Iran.  This area covers the Qazvin irrigation network with total area of 3307 km2 that is 

composed of agricultural fields, dominated by the growing of winter and summer crops, urban area, bare soil and natural vegetation. 5 
Weather stations are sparse and the minimum and maximum distance between stations are 13 and 78 km, respectively. For 

experimentation in this study, a sample subset of 3 × 8 grid points of ECMWF dataset is selected at 0.125º lat/lon distances.  
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Figure 2: Time series of the observed and the forecasted values at each station. The observed values are daily air temperature from 

weather stations and the forecasted values are daily air temperature from ECMWF at same locations. This figure shows the 

underestimation in ECMWF as well as spatial and temporal variability of bias.   
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Figure 3: Scatterplot of the observed and the forecasted values at each station. The observed values are daily air temperature from 

weather stations and the forecasted values are daily air temperature from ECMWF at same locations. Red points in the scatterplot 

denote the outliers.  
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Figure 4: Bias between the moments of observed and forecasted marginals at each moment of time series. The observed values are 

daily air temperature from weather stations and the forecasted values are daily air temperature from ECMWF at same locations.  
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Figure 5: The empirical marginal values 𝒖𝟏 and 𝒖𝟐 and the fitted polynomial for observed and forecasted air temperature for first 

day of March and June.  
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Figure 6: The spatial variability of the observed and the bias-corrected values comparing with the forecasted values over the study 

area in March 2014. The observed values are daily air temperature from five weather station, the bias-corrected values are the result 

of the bias correction methods and the forecast values are daily air temperature from ECMWF. For experimentation in this study, 

a sample subset of 3 × 8 grid points of ECMWF dataset is selected at 0.125º lat/lon distances. 5 
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Figure 7: The spatial variability of the observed and the bias-corrected values comparing with the forecasted values over the study 

area in June 2014. The observed values are daily air temperature from five weather station, the bias-corrected values are the result 

of the bias correction procedures and the forecast values are daily air temperature from ECMWF. For experimentation in this study, 

a sample subset of 3 × 8 grid points of ECMWF dataset is selected at 0.125º lat/lon distances. 5 
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