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Keery et al., Sensitivity of the Eocene Climate to CO2 and Orbital Variability 

Response to M. Crucifix (Referee) 

 

Referee comments in black 

Author responses in red 

 

We are very grateful for this thorough review. 

 

1 Summary 

Keery et al. present a sensitivity analysis of the Eocene climate to four factors: CO2 concentration, eccentricity, 

obliquity, and precession angle. They use, to this end, the PLASIM-GENIE model (details in their section 3) with 

suitable palaeogeography.  The methodology relies on a 50-member hyper-cube sample of a 5-d space (one 

extra dummy variable was added), and linear modelling with a Information Criteria for model selection. 

Experiment output are summarised using fit-for-purpose summaries like “tropical-polar temperature 

difference” and monsoon indices, as well as principal components obtained from a singular value 

decomposition. The authors conclude on the importance of CO2 for global mean temperature, and of the 

orbital elements for the spatial distribution and regional weather systems such as monsoons. 

2 Main comments 

1. The paper is in the line of a number of recent studies attempting to estimate the relative sensitivity of the 

climate system to CO2 and orbital forcing, using a methodology founded on ensemble of experiments. This 

includes, in addition to the Holden et al. (2015) and Bounceur et al. (2015) cited, Araya-Melo et al. (2015) and 

Lord et al. (2017). Keery et al. is the only article to focus on the Eocene, which makes it an original contribution. 

It also uses a much simpler methodology than Araya-Melo et al. (2015), Bounceur et al. (2015), and Lord et al. 

(2017) because it uses linear regression instead of a Gaussian process emulator. In fact, the authors reference 

to the word “emulator” is slightly unusual because emulation is, in the climate literature, often used to 

designate statistical meta-modelling with a focus on uncertainty quantification. Claiming (p. 8) that a “similar 

emulator approach has been applied by Bounceur et al. 2015” is therefore somewhat misleading. Bounceur et 

al. and Araya-Melo et al. applied the developments of Oakley and O’Hagan (2004) with, in the case of 

Bounceur, the additional complication of the PCA emulator.  

We agree that the comparison of our emulator to the emulators developed by Araya-Melo et al. (2015) and 
Bounceur et al. (2015) was misleading, and we will amend this section: 

Our emulator approach uses linear regression, rather than a Gaussian process, and is therefore simpler 
than the methods applied by Bounceur et al. (2015) in a study of the response of the climate-vegetation 
system in interglacial conditions to astronomical forcing, and by Araya-Melo et al. (2015) in their study of 
the Indian monsoon in the Pleistocene. 

In spite of its simplicity, we are confident that our approach may be correctly described as an emulator, as it 
fulfills the criteria described by O’Hagan (2006), and cited by Araya-Melo et al. (2015): 

• it is derived from a small number of model runs filling the entire multidimensional input space 

• once the emulator is built, it is not necessary to perform any additional runs with the model 

In passing, Araya-Melo et Lord used HadCM3 which shows that ensemble-based sensitivity analysis to orbital 
forcing is doable with GCMs (this qualifies the author’s comment on line 15, p.2). 
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We will amend this paragraph to acknowledge recent ensemble studies using GCMs: 

Climate simulations with high temporal and spatial resolution can be obtained from General Circulation 
Models (GCMs), but the requirement of GCMs for powerful computers and long run-times makes them 
difficult to deploy for large ensembles of model simulations and restricts their ability to investigate the 
large uncertainties in forcings and model parameterisations. Such ensembles are more practical with 
more heavily parameterised and hence more computationally efficient Earth system Models of 
Intermediate Complexity (EMICs), (Weber, 2010), although we note that Araya-Melo et al. (2015) and 
Lord et al. (2017) have deployed the GCM HadCM3 in ensemble-based studies of orbital forcing effects 
on climates of the Pleistocene and late Pliocene respectively. 

Of course, the fact that other authors have adopted a more sophisticated methodology invalidates by no 
means the approach used by Keery et al.: there may be no need to use a sledgehammer to crack a nut. It 
remains that the methodological set up used here is a step backwards compared to recent studies, and this 
arguably requires some justification. How much do we lose with the linearity assumption, and which impact 
does it have on the uncertainties of the quantification of main effects? (see comment 3. more specifically on 
main effects). 

As we have noted in our methods section, we have demonstrated that the linear models can be used to 
emulate PC scores with very high correlations to the PC scores derived directly through SVD, with examples 
from temperature and precipitation shown in Table 3.  We can therefore be confident that main effects derived 
from the linear models are robust.  We will amend the text: 

Unlike linear models, GP models are intrinsically stochastic and give a more accurate quantification of 
their own error in emulating the input data. However, GP models can become computationally 
demanding in high dimensional space, and their results can be more difficult to interpret.   

2. Experiment design. The authors do not say much about the ensemble design, except that this is a latin 
hypercube. There are many ways to do a latin hypercube, and it usually involves additional constraints.  

We will add a detailed description of the method used to generate the latin hypercube in an appendix, include 
forcing factor values for the full ensumble in a new Table, and we will amend the main text: 

The present study has been designed to facilitate direct comparison between the results for specific 
ensemble members and their direct counterparts in a related study using the EMIC GENIE-1 (Edwards 
and Marsh, 2005), which will include additional forcing parameters not used by this PLASIM-GENIE study.  
We have applied an iterative method to generate a pair of corresponding hypercubes with five and 
eleven dimensions for the PLASIM-GENIE and GENIE-1 studies respectively, in which the minimum 
Euclidean distance between any two points is maximised, and linear correlation between any two 
parameters is minimised. Details of the steps taken to generate the hypercubes are provided in Appendix 
A.  The absolute value of the correlation coefficient r did not exceed 0.1 for any pair of input (forcing and 
dummy) parameters.  Uniform ranges for each of the PLASIM-GENIE forcing parameters and the dummy 
parameter are shown in Table 1, and the values applied in all 50 PLASIM-GENIE ensemble members are 
shown in Table 2. 
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Table 2 Forcing factors and dummy values for each member in the ensemble.  Precession = , the angle 

between the moving vernal equinox and the longitude of perihelion. 

Member (-) CO2 (ppm) Eccentricity (-) Precession (°) Obliquity (°) Dummy (-) 

1 975.6 0.0022 142.5 22.37 0.822 

2 2418.7 0.0256 165.2 23.95 0.907 

3 1259.4 0.0007 307.1 23.91 0.323 

4 801.3 0.0163 270.4 23.50 0.276 

5 1720.1 0.0559 206.7 23.82 0.402 

6 327.1 0.0595 135.9 23.53 0.681 

7 2937.7 0.0418 287.1 22.53 0.650 

8 1200.3 0.0237 313.2 24.12 0.978 

9 1420.7 0.0158 297.1 23.86 0.931 

10 2157.6 0.0432 100.6 23.74 0.661 

11 1791.7 0.0241 247.2 23.43 0.429 

12 2369.0 0.0425 78.9 22.65 0.167 

13 2502.9 0.0296 0.5 22.69 0.122 

14 2149.2 0.0405 249.9 24.23 0.347 

15 1061.7 0.0394 40.9 23.94 0.189 

16 711.3 0.0199 274.6 22.08 0.913 

17 1817.1 0.0578 291.4 23.08 0.888 

18 722.1 0.0463 195.8 24.38 0.865 

19 2988.5 0.0039 110.1 24.40 0.049 

20 539.4 0.0251 212.5 23.29 0.234 

21 450.6 0.0335 96.1 22.28 0.674 

22 2700.1 0.0049 165.9 23.66 0.630 

23 2025.4 0.0320 189.4 23.63 0.087 

24 2268.7 0.0308 233.3 22.86 0.461 

25 1447.2 0.0364 62.0 23.40 0.541 

26 1168.3 0.0300 147.4 22.97 0.947 

27 1317.6 0.0377 12.4 23.04 0.714 

28 1639.5 0.0265 150.9 22.98 0.524 

29 399.0 0.0589 262.7 23.46 0.028 

30 2876.3 0.0411 203.0 22.05 0.608 

31 2611.1 0.0170 54.3 22.84 0.746 

32 2831.7 0.0564 187.2 23.72 0.696 

33 1998.5 0.0372 278.8 24.19 0.805 

34 1465.0 0.0439 38.9 23.50 0.376 

35 1660.0 0.0109 85.3 22.88 0.896 

36 2393.7 0.0587 127.9 24.27 0.191 

37 286.3 0.0004 27.1 23.99 0.391 

38 667.4 0.0509 116.5 22.71 0.569 

39 2246.8 0.0450 317.4 22.90 0.103 

40 2334.2 0.0096 294.7 23.61 0.532 

41 2968.2 0.0346 329.8 22.51 0.314 

42 768.2 0.0085 218.3 23.00 0.000 

43 925.8 0.0450 327.2 24.32 0.753 

44 384.5 0.0081 60.6 22.59 0.436 

45 850.7 0.0551 322.9 23.21 0.459 

46 1112.8 0.0150 356.7 23.27 0.579 

47 1255.8 0.0116 212.2 22.31 0.487 

48 1124.1 0.0530 343.7 22.40 0.065 

49 2113.9 0.0276 9.9 22.19 0.856 

50 1681.0 0.0354 175.5 22.45 0.287 
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In fact this experiment design raises some doubts. For example, why are some secondary structures (periodic 

up and downs) apparent in the response to obliquity, Figure 5, middle column? Is this just a subjective visual 

impression?  

We have created an additional plot of the two forcing factors obliquity and CO2, for discussion, but not for 
inclusion in the paper, and this shows a very similar pattern to the obliquity-MAT subplot in Figure 5, with 
corresponding clusters and the same slight impression of periodicity. We can therefore be confident that the 
apparent periodicity noted by the reviewer in the model output is an artefact of randomly generated structure 
in the model input. 

 
Figure R1   Obliquity plotted against CO2.  

One potentially problematic element is the definition of the sampled astronomical space. It seems that latin 

hypercube sampling is made on axes along e,  (longitude of perihelion) and . If this is what the authors have 

been doing then this is non-physical. We know that the astronomical forcing generates effects through 

seasonal and daily insolation, which are very well approximated by linear functions of e sin (which the 

authors call the precession index on Fig. 6) and e cos. This is the reason why several authors have chosen to 

sample the astronomical space following the axes e sin and e cos and regress against these components. 

Presumably the regression analysis by Keery is indeed done against these indices but the text is not always 

clear. Lines 1-2 p. 8. rather suggest that the explanatory variables where sin and cos (instead of their 

multiplication by e) and the lines 4-5 p. 11 are quite confusing. Hopefully the choice of regression variables is 

mainly matter of text clarification, but the design of the latin hypercube may have a more fundamental 

problem. 

We have indeed constructed our hypercube by sampling independently on e,  (longitude of perihelion) and , 

but we do not agree that this is non-physical, as there are no combinations of these parameters which can be 

excluded for the early Eocene period.  If we have ignored any information which would imply that some 

combinations are less likely to have occurred than others (we are not aware of any), then this would only result 

in a minor reduction in the efficiency with which we fill our state space.  We note that precessional effects are 

well approximated by esin and ecos, and that several authors have chosen to sample and regress against 

these components, but we have chosen not to take this approach, as it would not allow any climatic effects of 

eccentricity which may exist independently of precession to be identified.   

We will amend our description of the forcing factors: 

In order to investigate the sensitivity of the Eocene climate to variation in atmospheric CO2 and orbital 

parameters, we have constructed an ensemble of 50 model configurations, each with a unique set of 

forcing parameters comprising atmospheric CO2, eccentricity (e), obliquity () and precession (), the 

angle on the Earth’s orbit around the Sun between the moving vernal equinox and the longitude of 

perihelion (Berger et al., 1993).  When e is zero, the Earth's distance from the Sun is constant at all points 
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on the orbit, so there is no precessional effect.  The magnitude of precessional effects is controlled by e, 

while phase is controlled by , so precessional effects are commonly described by the precession index 

given by esin.  The only orbital parameter which alters the total annual solar radiation received by the 

Earth is e, although the range of variation is very small.  We include e and  as separate and independent 

forcing parameters, rather than combined as the precession index, or in the form ecos.  This approach 

does not make the assumption that the only effect of eccentricity on the Earth's climate is through its 

effect on the amplitude of the precession cycle, but allows experimental results to be examined for 

effects of e and  either separately or in combination.   An additional dummy parameter is included to 

test for possible overfitting of relationships between forcing parameters and model output fields. 

We will also amend our description of our preparation of the forcing factors for linear modelling: 

Values of the forcing parameters CO2, e and  (with its very small angular range considered to be 

approximately linear) were normalised to the range [-1, 1] and combined with sin and cos to form 50-

element column vectors representing the forcing factors. 

3. There may be some confusion about the meaning of the main effects. Saltelli does not use the phrase “first 

order” to mean linear approximation. In a case where only one factor would matter (be the relationship linear 

on not), the main and total effects would match (Saltelli et al. (2004), ch. 1 states clearly the definitions; or 

refer again to Oakley and O’Hagan (2004)). More generally, computing main and total effects is not trivial and 

always involves some approximations.More details on their computation would be welcome. 

We will amend the text to provide more details on the computation of the main effects and total effects: 

In order to analyse the results of each of our linear models, we apply the method described in detail by 

Holden et al. (2015) to derive the main effects (Oakley and O'Hagan, 2004), which provide a measure of 

the variation in the linear model output due to each of the terms (first order, second order and cross 

products), derived from their coefficients, and total effects (Homma and Saltelli, 1996), which separate 

the effect of each forcing parameter on the variation in the model output.  Since the forcing factors are 

scaled within the range [-1, 1], the variances of the first order, second order and cross product terms can 

be approximated as 1 ,
3

  1
9

and 4
45

 respectively, and we have applied these values as scaling factors in 

calculating the main effects and total effects. 

4. Singular value decomposition is a great dimensionality reduction methodology, but how much is learned by 

analysing the behaviour of principal components separately is a more contentious subject. Identification of 

principal components can be fragile to some implementation details, such as, e.g. grid area weighting and 

experiment design, and the physical phenomena which give rise to climate variability need not be orthogonal. 

In fact physical modes may project poorly on the orthogonal vectors (Monahan and Fyfe, 2006). These caveats 

implicitly acknowledged by the authors (p. 11, ll. 20-21) but this state-of-affairs poses some questions about 

the emphasis on principal components in this article. 

We will amend the text to acknowledge these caveats: 

We perform a singular value decomposition to identify the PCs and empirical orthogonal functions 

(EOFs) of temperature and precipitation fields in the full ensemble, although we note that climate 

variability may not be due to physical processes which vary orthogonally, and identification of PCs can be 

influenced by aspects of the experimental design. 
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3 Minor (scientific) comments 

• How Fig. 2 should be interpreted is not entirely clear since the ensemble was not explicitly designed so that 

the ensemble mean is an estimate of the Eocene climate mean. 

Figures 2 and 4 are included to provide an illustrative summary of the spatial distribution and variation of 

temperature and precipitation in the full ensemble output, without implying that the ensemble mean is an 

estimate of the Eocene climate mean.  We will amend the text: 

Analysis of the model results has focused on variation in surface air temperature and precipitation in 

both winter and summer in each hemisphere, although it should be noted that our experiment has not 

been designed such that mean values in our ensemble output represent direct estimates of the Eocene 

climate mean. 

4 Minor (editorial) comments 

• Introduce subtitle after section 2. 

We will introduce the subtitle ‘Climate of the Early Eocene’ 

• Material about cyclostratigraphy under section 2.1.2. may possibly be considered for shortening as slightly 

out of scope of the article. This said this is an interesting read. 

We would prefer to retain the section on cyclostratigraphy in full, as we believe it provides important details 

which are relevant to our experimental design, particularly our selection of independent orbital values, and the 

separation of e and . 

• PLASIM-GENIE does not need a specific section: it can fall under section 3.Methods. 

This section will be moved to the Methods as suggested by both reviewers. 

• p. 6 reference Gough (1981) is mistakenly repeated. 

The duplicated reference will be removed. 

• p. 7, the sentence “We apply the linear algebraic tool SVD” sounds unnecessarily sophisticated. Why not “We 

perform a singular value decomposition to identifyprincipal components” 

We will amend this sentence: 

We perform a singular value decomposition to identify the PCs and empirical orthogonal functions 

(EOFs) of temperature and precipitation fields in the full ensemble. 

• p. 10, l. 27 : define the word “precession” precisely. 

We will make amendments to the text to define precession (), and the precession index (esin).  See our 

response to an earlier comment. 

• p. 12, ll. 13-17 : introducing new results so close to the closing words is usually not encouraged. 

We will delete these results, as further analysis suggests it is difficult to draw any very useful conclusions from 

the extra experiment, and we will amend the text to include the reference to Anagnostou et al. (2016): 

If atmospheric CO2 remained within a narrower range throughout the period, for example in the range 

700 to 1800 ppm indicated for the early Eocene by Anagnostou et al. (2016) in a recent study using 

boron isotopes, then outside of short-lived hyperthermals, the relative influence of CO2 and orbital 

inputs might have been more evenly balanced.   
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5 Digital material 

• Relevant data of the Eocene runs (at least the summaries and experiment input data) could be provided. 

We will include the values of forcing factors for the 50 member ensemble in a new Table. 
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