Pearce et al.

The 3.6 ka Aniakchak tephra in the Arctic Ocean: a constraint on the Holocene radiocarbon reservoir age in the Chukchi Sea

| Minor comments |                   |                                                                                                                                                                                                                                                                                                 |
|----------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Page           | Line<br>23        | Comment We cannot be sure that the broad peak of Aniakchak ash does not extend                                                                                                                                                                                                                  |
| _              |                   | higher than 550 cm                                                                                                                                                                                                                                                                              |
| 3              | 19                | Worth adding a reference to Coulter et al (2012) - finding of two Aniakchak cryptotephra layers in the NGRIP ice core, not included into Abbott&Davies (2012). Please see a full reference below.                                                                                               |
| 3              | 30 and further on | Abbott&Davies (2012) are giving an age of 3641±3 a b2k (Table 1). I understand your maths but it is better to provide original age followed by BP estimate in brackets. Or even to explain that you convert the published a b2k age to BP.                                                      |
|                |                   | Could you please include the <sup>14</sup> C-derived age estimates for Aniakchak from Davies et al (2016) so that a reader could see them in the text?                                                                                                                                          |
| 6              | 3                 | Please let us know what standards you used for monitoring of EMP measurements, and show analytical precision of your measurements, for example, put $2\sigma$ error bars on the geochemical bi-plots                                                                                            |
| 7              | 4                 | No surprise that the minimum size of your glass shards is 25 $\mu m$ - you put them through a 25 $\mu m$ mesh. I guess it is better to give only average and maximum sizes                                                                                                                      |
| 7              | 11-12             | "All measurements with total oxide percentages over 94% were included, and were normalized to 100% (Table 2, Figure 3)." - this phrase will be more appropriate in section 2.4                                                                                                                  |
| 7              | 28-30             | Please indicate that you are including only high-Si points from Kaufman et al (2012) and Davies et al (2016); in the sites considered in these papers Aniakchak glasses comprise both andesitic and rhyolitic populations with occasional dacitic glasses                                       |
| 8              | 8                 | "Although several smaller eruptions of the Aniakchak occurred in the Holocene (Neal et al., 2000), they have not been associated with any tephra deposits"  I would suggest a newer book on Aniakchak eruptive history  Bacon, C. R., Neal, C. A., Miller, T. P., McGimsey, R. G., & Nye, C. J. |
|                |                   | (2014). Postglacial eruptive history, geochemistry, and recent seismicity of Aniakchak volcano, Alaska Peninsula (No. 1810). US Geological Survey. <a href="https://pubs.er.usgs.gov/publication/pp1810">https://pubs.er.usgs.gov/publication/pp1810</a>                                        |
|                |                   | Both pre- and post-caldera II tephras have been reported by these authors.                                                                                                                                                                                                                      |
| 8              | 28                | major increase at 715 (and not at 711.5) cm in p. 7 line 8                                                                                                                                                                                                                                      |

- We cannot be sure that the first occurrence of Aniakchak tephra is at 711.5 cm this is the lowermost <u>analyzed</u> level and the first major increase in glass concentration, however, we just do not know whether similar glass compositions occur below this level.
- 9 3 Why 15 cm and not 10 as it has been stated earlier?

**Table 2** - I think this table is not necessary in the text: it is hardly readable and, in addition, all data points are shown in the bi-plots and are given in the supplement.

**Table 2 and EMO data in the Supplement**: It might be better to list major oxides according to their valence (in reverse order from 4 to 1) with minor  $P_2O_5$  at the very end as it is accepted in most geochemical publications

SiO<sub>2</sub> TiO<sub>2</sub> Al<sub>2</sub>O<sub>3</sub> FeO MnO MgO CaO Na<sub>2</sub>O K<sub>2</sub>O P<sub>2</sub>O<sub>5</sub>

## **Figures**

- **Fig. 1.** Red labels, especially Mt. Logan, are not easily readable. Probably it is better to put them in black font leaving red symbols? or to underlie at least Mt. Logan with a white rectangle and put it farther north on the mainland?
- **Fig. 2.** Is it possible to add contrast to glass shards images?
- **Fig. 3.** Reference points are not well discerned maybe it is better to color them in different colors?

## References not included into the ms under consideration

- Bacon, C. R., Neal, C. A., Miller, T. P., McGimsey, R. G., & Nye, C. J. (2014). Postglacial eruptive history, geochemistry, and recent seismicity of Aniakchak volcano, Alaska Peninsula (No. 1810). US Geological Survey. <a href="https://pubs.er.usgs.gov/publication/pp1810">https://pubs.er.usgs.gov/publication/pp1810</a>
- Bourne A.J., Davies S.M., Abbott P.M., Rasmussen S.O., Steffensen J.P., Svensson A. Revisiting the Faroe Marine Ash Zone III in two Greenland ice cores: implications for marine-ice correlations. J. Quat. Sci., 28 (2013), pp. 641–646
- Davies, S. M., Abbott, P. M., Meara, R. H., Pearce, N. J., Austin, W. E., Chapman, M. R., ... & Farmer, E. J. (2014). A North Atlantic tephrostratigraphical framework for 130–60 ka b2k: new tephra discoveries, marine-based correlations, and future challenges. Quaternary Science Reviews, 106, 101-121.
- Griggs, A. J., Davies, S. M., Abbott, P. M., Rasmussen, T. L., & Palmer, A. P. (2014). Optimising the use of marine tephrochronology in the North Atlantic: a detailed investigation of the Faroe Marine Ash Zones II, III and IV. Quaternary Science Reviews, 106, 122-139.
- Rilehle et al (1999) Data on Holocene Tephra (Volcanic Ash) Deposits in the Alaska Peninsula and Lower Cook Inlet Region of the Aleutian Volcanic Arc, Alaska <a href="http://kiska.giseis.alaska.edu/dbases/akpen\_tephra/akpen\_tephra.html">http://kiska.giseis.alaska.edu/dbases/akpen\_tephra/akpen\_tephra.html</a>

Waythomas, C. F., & Neal, C. A. (1998). Tsunami generation by pyroclastic flow during the 3500-year BP caldera-forming eruption of Aniakchak Volcano, Alaska. Bulletin of Volcanology, 60(2), 110-124.