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Major comments: 

1. (Comment) This manuscript introduces a technique for describing cloud processes using the 

drop size distribution gamma fit coefficients, and the trajectory of these coefficients in three-

dimensional space. Comparisons within this phase space are made among clouds with different 

environmental conditions and linked to various cloud processes. While the manuscript is well 

written, I think some aspects of the paper need further work. 

1. (Answer) We thank Anonymous Referee #2 for the invaluable comments. Please find in this 

document the detailed responses to your concerns. 

2. (Comment) First, the physical insights that are provided are not closely linked to the 

coefficients themselves, and instead are reworked into pseudo-forces related to condensation 

and collision processes. However, the method used to decompose the trajectories into these 

pseudo forces is not clearly described, and as a result I find it difficult to accept many of the 

explanations behind the patterns in the data. 

2. (Answer) Indeed, the pseudo-forces presented are somewhat loosely defined, which is one 

of the main reasons why we use “Illustration of microphysical processes…” in the title. The use 

of the Gamma phase space as an entity is new to the microphysical studies and we do not aim 

to cover all its aspects in this first introduction. We are already working in a new study focusing 

only on cloud modeling to extract the pseudo-forces definition and to show how this approach 

can be useful for microphysical modeling. In this study, our main interest is to show that we can 

study patterns in this space and that it can be useful to the tools already implemented in models 

(or remote sensing applications) and to develop new ones. 

That said, we followed your suggestion and dedicated efforts to better define and quantify the 

pseudo-forces properties. We identified that the ideal tool to address this issue would be a 

relatively simple model that solves the condensation and collision-coalescence growth using the 

bin approach instead of the bulk. A model that fits those requirements is described in Feingold 

et al. (1999) – item “c” in section 3, where we run only two parcels and not a bigger ensemble. 

This is a parcel model that treats the DSDs in 35 mass-doubling bins from 3.5 µm up to ~9 mm 

in diameter. The processes solved by the model are: 1) CCN activation, considered to be 

composed of ammonium sulfate; 2) growth by condensation; 3) growth by collision-coalescence 

and 4) effects of giant CCN on the DSD evolution (we turn this process off for the purposes of 

this review). Other processes such as aqueous chemistry, complex aerosol composition, trace 

gases and radiation (and the effects of those processes on the DSDs) are not treated. 

Additionally, by being a parcel model, it does not consider turbulent mixing and sedimentation 

from above. 

The characteristics of the model make it suitable to simulate the effects of condensation and 

collision-coalescence growth in the DSDs, which we can use to show the related patterns in the 



Gamma phase-space. We tried to produce results based on the conditions measured during 

flight AC09 (now RA1), where we used the following parameters as input: 1) mean aerosol 

diameter Dg = 1.55 µm, with standard deviation of 2.2 for the lognormal function of the aerosols; 

2) pressure at cloud base of 890 hPa; and 3) temperature at cloud base of 20.85 °C. The vertical 

speed was fixed at 0.5 m s-1 as we wanted to minimize the effect of new droplet formation in 

the DSD shape. Under those conditions, we ran the model twice: one run with only 

condensational growth (CG run) and one with both condensation and collision-coalescence 

growth (C2G run). Both runs produced the exact same DSDs in the lower parts of the cloud where 

the condensation dominates, but differed significantly when the collision-coalescence became 

active (around 1200 m, where cloud base is at 0 m). When the collision-coalescence process 

activates, Deff ≈ 25 µm and the condensational growth is much less effective. Therefore, it was 

possible to isolate both processes. Because there is no turbulent mixing or dilution with dry air, 

the droplet growth with altitude is much more pronounced in the model compared to our 

measurements during AC09. For this reason, we do not limit the Gamma fit to D < 50 µm as in 

the paper. Otherwise, it would be difficult to capture the effects of the collision-coalescence 

process – droplets grow relatively quickly beyond the 50 µm mark. 

We fitted Gamma DSDs (using the same moments of order zero, two, and three as in the paper) 

to the model outputs every 20 seconds. Therefore, each point in the Gamma phase space 

represents the instantaneous DSD measured every 20 seconds. The results are shown in the 

following three figures. 

Figure R1 shows the Gamma phase space for both runs, where “*” markers are related to CG 

run and squares to C2G. The arrows represent the displacement vector every 20 seconds, which 

is related to the respective pseudo-force (colors represent altitude above cloud base in m). Note 

that in the first 500 m the Gamma points are the same for both runs. This layer is defined by 

condensational growth alone and we observe a “zig-zag” pattern in the Gamma phase-space. 

When the trajectory is upwards in the “zig-zag”, they are similar to what we observed in the 

paper – that is, growing µ and Λ (and shrinking N0) along with the condensational growth. On 

the other hand, the model results also show a downward (in the Gamma space) trend during 

condensational growth. We noted that when the trajectory is downwards, the Gamma fit does 

not represent the DSD width correctly. At those points, the fixed bins between 10 µm and 15 

µm present fast-growing concentrations (when the droplets grow sufficiently to transition from 

the lower bins) that disproportionately affects the Gamma DSD width. In the downward pattern, 

the Gamma DSD relative dispersion can be up to 150% higher than the binned DSD. When the 

process stabilizes, the trajectory returns to the upward trend and the Gamma and binned DSD 

widths get progressively closer (~20% to ~50% difference). Based in those results we can 

conclude that the condensational growth in the model produces trajectories in similar directions 

to what we observed in the paper. 

 



 

Figure R1: Gamma phase-space for both CG and C2G runs. The “*” markers are relative to the 

CG run, while squares represent the C2G run. Arrows represent the displacement vector 

between each 20-s point, which is related to the respective pseudo-force. Colors represent 

altitude above cloud base in m. 

Figure R2 shows the same points of Figure R1, but colored according to Deff. Additionally, we 

show lines of constant Deff along a surface (not shown) of Nd = 250 cm-3 similarly to Figure 10 in 

the paper. The lines start at 5 µm in the top and grow in 5 µm intervals up to 50 µm in the bottom 

line. When comparing the trajectories with the Deff lines, it is possible to see where the droplets 

are growing faster. For instance, the condensational growth close to cloud base is very effective 

(because the droplets are smaller) and the trajectory tend to cross the Deff lines. However, when 

droplets reach Deff ≈ 25 µm, the trajectories get almost parallel to the lines, showing slower 

growth. On the other hand, the collisional growth accelerates with increasing Deff. This is 

expected from theory, but it is interesting to quantify its effects on the spherical coordinates of 

the displacement vectors – Figure R3. 



 

Figure R2: similar to Figure R1, but colored according to Deff. The lines shown are lines of 

constant Deff along a surface of Nd = 250 cm-3 as in Figure 10 in the paper, going from 5 µm (top 

line) to 50 µm (bottom line) – 5 µm intervals. 

Figure R3 shows the spherical coordinates of the vectors in Figures R1 and R2. θ is the azimuth 

angle measured in the plane log(N0) x log(µ), being 0 at the log(N0) axis and growing counter-

clockwise. φ is the elevation angle, measured from the plane log(N0) x log(µ) to the log(Λ) axis. 

The size of the vectors is measured by r. In Figure R3 we excluded the points in the downward 

part of the “zig-zag” mentioned above. Non-filled circles in Figure R3 represent condensational 

growth alone, while filled markers represent collision-coalescence (colors are altitude above 

cloud base in m). It is possible to note that the elevation angle φ is slightly positive for the 

condensational growth, decaying with Deff. The average value of this angle is 0.26 °. It has small 

values mainly because of the bigger values of log(N0) as compared to log(Λ). Nonetheless, the 

most important feature is its sign transition from condensational to collisional growth. On the 

latter, the angle seems to grow linearly with Deff (except for the last point) as the process 

intensifies – averaged value of -4.23 °. Overall, this angle is related to the DSD curvature trend – 

positive when the curvature is shrinking (condensational growth) and negative when the 

curvature is increasing (collisional growth). 

The azimuth angle θ defines how N0 and µ evolve along the trajectory. For the condensational 

growth, this angle averages 179.6 °, meaning growing log(µ) and shrinking log(N0). On the other 

hand, this angle averages -13.7 ° for collisional growth and results in the opposite trend for the 

parameters. Both observations are in line with what we observed in the paper – now there is at 



least some quantification of the angles. Note that the angles most likely have different values in 

our observations given the differences in the values of the Gamma parameters. However, their 

sign, and therefore the direction of the motion in the space, is the same between our model 

calculations and the observations shown in the paper. Finally, we can note that r tends to 

decrease as the condensation rates decay, but it does not increase as the collisional growth 

intensifies. However, the acceleration of the collisional growth is reflected in φ and θ – both 

decrease, resulting in a trajectory that crosses the Deff lines in Figure R2. 

Overall, the modeling results presented here clearly indicate that the patterns observed in the 

Gamma phase space in the paper are indeed related to the condensation and collision-

coalescence processes. The relation between both processes and the evolution of the Gamma 

parameters are consistent between the Lagrangian simulation and the observations. The natural 

next step would be to calculate the speeds and accelerations (and therefore the actual pseudo-

forces), but this will not be addressed in this introduction paper. The actual implementation of 

the concepts presented here would need further work that is beyond the scope of the present 

study. A study is underway using different parametrizations, aerosol properties and 

environmental properties. 

We added three new paragraphs to Section 2.3 commenting on the Lagrangian model results 

and detailed it a little more in the supplement (with the figures/text shown here for the readers). 

 

Figure R3: spherical coordinates of the displacement vectors shown in Figures R1 and R2. θ is 

the azimuth angle in the log(N0) x log(µ) plane, growing counter-clockwise (is 0 at the log(N0) 



axis). φ is the elevation angle from the log(N0) x log(µ) towards the log(Λ) axis and r is the size 

of the vectors. The colors represent altitude above cloud base in m. 

3. (Comment) Secondly, gamma functions often provide good mathematical fits to drop size 

distributions, but attempting to understand cloud processes using the fit coefficients is fraught 

with difficulty, which I don’t think is addressed sufficiently in this manuscript. Gamma function 

coefficients can vary substantially depending on the fit method used, the size range over which 

the fit is made, and the suitability of the underlying size distribution shape to be fit with a 

gamma. Many of these issues were addressed in the recent publication by McFarquhar et al. 

(JAS 2014). Using different fitting methods they found that the N0 coefficient, for example, can 

vary by many orders of magnitude, even when the same moments (1, 2, and 6) are used to make 

the fit. Using a different set of moments, like the 0th, 2nd, and 3rd used in this manuscript would 

likely result in even larger changes. Furthermore, the coefficients N0 and mu are inextricably 

linked, with N0 having the units of mˆ(-4-mu). So as mu changes, N0 will respond 

mathematically, even though such a change may not represent a physical process. 

3. (Answer) The Gamma function and its parameters are indeed complex to use in practical 

applications. Additionally, the N0, µ, and Λ parameters can sometimes seem as abstract numbers 

that are mathematically loosely defined. In other words, those parameters can have extreme 

behaviors depending on the way you choose to calculate them. However, their values and, 

perhaps most importantly, their interdependence is singular in each methodology. For instance, 

we could have different values for the Gamma parameters shown in the paper and the spherical 

coordinates shown in Figure R3 if we were to use, say, moments 3, 4, and 6 for the fit. If we were 

to compare between the two methodologies, it wouldn’t be a fair comparison because their 

internal functioning (i.e. their parameter space) is different. Fits that use higher-order moments 

have stronger weights for bigger droplets, affecting the parameters values and their phase 

space. What we can do is to fix in a particular methodology and make the pattern analysis inside 

its particular phase space. We specifically chose to use moments 0, 2, and 3 in order to obtain a 

parameter space that is similar to what a bulk model should be able to reproduce. With regards 

to the moment method, we believe this is the best approach given that it precisely reproduces 

at least 2 moments predicted by bulk models (e.g. droplet number concentration and liquid 

water mixing ratio). 

When the methodology is fixed, it doesn’t really matter if, for instance, N0 covers several orders 

of magnitude. In our modeling calculations N0 went from ~10-150 to ~101, but all those values are 

inside the phase space and can be expected when the DSDs fit certain criteria. We noted that N0 

reach such low values for narrower DSDs, like the ones that appear after long periods of 

(exclusively) condensational growth. Therefore, the theoretical phase space allows for such wide 

variability. The observations, on the other hand, will of course cover a much more limited 

volume in the phase space. The idea is that both theoretical and observed phase spaces operate 

under the same underlying “laws” – at least considering only condensation and collision-

coalescence growth, the model should be expanded to encompass other processes. 

Regarding the linkage between N0 and µ: as you correctly pointed out, those parameters are 

mathematically linked by definition. In fact, all three parameters are correlated in one way or 

another. When you go back to the equations used to obtain the parameters, this is very clear: 



first you obtain µ as a function of a dimensionless ratio between the moments, then you obtain 

Λ from µ, and finally N0 from both of them. The relation between the Gamma parameters, 

modulated by the three moments, is a key aspect that generates the trajectories observed. If 

the parameters were completely independent, there wouldn’t be trajectories in the phase 

space. There would probably be “clusters” of points for various types of DSDs. Our methodology 

aims to take advantage of this relationship in order to help on pattern recognition. It follows 

that the phase space is non-orthogonal, where it can “shrink” or “inflate” depending on the 

region of analysis. This is possibly one of the difficulties in applying this method to models, 

because the mathematic deductions are not straightforward. However, the ability to describe 

the microphysical evolution in this space opens new possibilities for DSD modeling, potentially 

improving subsequent calculations such as evaporation, sedimentation, etc. 

I understand that the relationship between µ and N0 is mathematical, but I would like to point 

out that it also makes physical sense. Take Equation 9 from the paper: 

𝜀 =
𝜎

𝐷𝑔
=

1

√𝜇 + 1
 

This equation states that the relative dispersion (or DSD width) can be calculated directly from 

µ. When µ increases, the DSD gets narrower. In that case, the left tail of the DSD gets closer to 

the maximum concentration diameter. Therefore, the intercept has to be lower and N0 also 

shrinks. If you consider condensational growth, the situation is the same – see figures here and 

in the paper. Therefore, the linkage between N0 and µ also have association to physical 

processes. When we look at the collision-coalescence growth, the opposite happens - µ 

decreases causing N0 to increase. 

4. (Comment) A more effective method may be to plot the moments themselves in 3D space 

rather than first fitting them to a gamma function. The moments are more easily linked to known 

microphysical processes, and if they are computed directly from the distributions do not suffer 

from the complications of poor fitting. The moments can always be computed from modeled 

DSDs as well, which would the avoid the further complications introduced when models use 

restricted gamma parameter spaces. At the very least, I think the authors should investigate the 

sensitivity of the observed phase-space patterns to different gamma fitting methods, and more 

clearly identify the source and interpretation of the F_cd and F_cl pseudo-forces. 

4. (Answer) We believe that plotting the moments in a 3D space would be very similar to plotting 

the Gamma parameters. The moments are also not independent, thus resulting in a similar non-

orthogonal space. However, the linkage between the moments-space and the underlying DSD is 

non-trivial. You would need to apply transformations to obtain the respective DSDs. Therefore, 

we believe the Gamma phase-space is more suitable in order to be portable for other 

applications. Also, as commented above, some calculations explicitly need the DSD parameters. 

Regarding other methods to fit the DSDs, we tested a new fit based on moments of order 3, 4, 

and 6 (M346). Here we reproduce Figures R1-3 with this new approach (Figures R4-6). For this 

case, we had to limit the fittings to D < 150 µm because of the stronger weight to bigger droplets 

that caused negative values of µ. Note that the patterns in the phase-space are very similar to 



the previous case (M023). Averaged values for θ and φ are 179.5 ° and 0.35 ° for condensation 

and -19.4 ° and -4.0 ° for collision-coalescence, respectively. 

 

 

Figure R4: same as Figure R1, but for M346. 



 

Figure R5: same as Figure R2, but for M346. 

 



 

Figure R6: same as Figure R3, but for M346. 

 

 

Specific comments: 

1. (Comment) Section 2.2: How were DSD shapes that are not well fit by a gamma function 

handled in the analysis (e.g. bimodal or skewed distributions)? 

1. (Answer) No special routine was applied to bimodal or skewed distributions. The idea is to 

produce the phase-space of the observations as is (except for the filter to remove residual DSDs) 

within the limitations of the Gamma fit. 

2. (Comment) Section 2.3: The introduction of the F_cd and F_cl pseudo-forces seem incomplete 

and leaves many unanswered question, such as: How were they determined, i.e. can they be 

presented mathematically? Do they completely describe the total force F? Are they orthogonal, 

if not, in which direction in the phase space does each force point? 

2. (Answer) Please refer to our answer to your major comments and the new paragraphs in 

Section 2.3. 



3. (Comment) Figures 3,5,6,7, and 8: It is difficult to determine where the lines and points are in 

3-D space. A projection of the fit lines onto the X, Y, and Z planes would greatly help with the 

visualization. 

3. (Answer) We left Figure 3 as is for simplicity, but added the requested projections to the other 

figures. 

4. (Comment) Section 2.3: Given the sensitivity of N0 to the mu parameter, the speculations 

regarding N_0 would be much more convincing if N_d (or 0th moment) were used instead. 

4. (Answer) Our affirmations about N0 were not speculations, but based on our measurements 

– note that the trajectories shown in Figures 5-8 point out to the patterns commented in Section 

2.3. The new model calculations also corroborate our affirmations. 

5. (Comment) Section 3.2: The manuscript states that measurements were taken ’close to cloud 

top’, but more information is needed about the placement of the measurements in the cloud. 

Was the aircraft making multiple passes to a fixed location, or attempting to intercept the same 

visual position in the cloud on mulitple passes? How long did the aircraft pattern take relative 

to the lifetime of the cloud, and at what point the life cycle of the cloud were the measurements 

taken? 

5. (Answer) We added the following sentences to Section 2.1 to clarify the flight strategy: “The 

latter step was deployed as follows. After the cloud base penetration, the aircraft 

performed several penetrations in vertical steps of several hundred meters. In each step, 

the aircraft penetrated the cloud tops available, thus avoiding precipitation from above. 

In this way, different clouds can be penetrated in the same altitude level, but the vertical 

steps followed the growing cumuli field overall”. 

6. (Comment) Section 3.3: How were the clean and polluted clouds determined? Were the flight 

patterns and environmental conditions for each of these clouds comparable? 

6. (Answer) The clean and polluted clouds were determined based on the measurements shown 

in Table 1 – i.e. the aerosol concentrations. All flight patterns followed the steps we described 

in Section 2.1 and we also show them in the map in Figure 1. The environmental conditions are 

discussed in Figure 4 and Table 1. 


