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Abstract. The framework of universal multifractals (UM) allows to characterize the spatio-temporal variability of
geophysical data over a wide range of scales with only a limited number of scale-invariant parameters. This work
aims at clarifying the link between multifractals and more conventional weather descriptors and to show how they
can be used to perform a multi-scale evaluation of model data.
The first part of this work focuses on a climatological study of precipitation intensities simulated by the COSMO5

numerical weather prediction model using the UM framework. Analysis of the spatial structure of the multifractal
parameters and their correlations with external meteorological and topographic descriptors reveals that simulated
precipitation tends to be smoother at higher altitudes and that the mean intermittency is mostly influenced by the
latitude. A hierarchical clustering was performed on the external descriptors yielding three different classes, which
correspond roughly to Alpine, Mediterranean and temperate/continental regions. Distributions of multifractal pa-10

rameters within these three classes are shown to be statistically significantly different, indicating that the multifractal
signature of rain is indeed climate dependent.
The second part of this work is event based and focuses on the smaller scales: the multifractal parameters of

precipitation intensities at the ground are compared with those obtained from the Swiss radar composite during
three events corresponding to typical synoptic conditions over Switzerland. The results of the analysis show that15

the COSMO simulations exhibit spatial scaling breaks that are not present in the radar data, indicating that the
model is not able to simulate the observed variability at all scales. Comparison of the standard operational one-
moment microphysical scheme with a more advanced two-moments scheme shows that while no scheme outperforms
systematically the other, the two-moment scheme tends to produce larger extreme values which agree better with
the radar composite.20

1 Introduction

Validation of precipitation fields simulated by a numerical weather prediction model is a delicate task as reference
data (rain gauges, radar scans) are typically available at a different spatial and temporal resolution than the model.
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Traditional point-based verification scores are generally unable to provide sufficient information about the forecast
quality as they do not consider the spatial structure of the data and are affected by the so-called “double penalty”
(Gilleland et al., 2009). Indeed, small displacements in the simulated forecast features will be penalized twice, once
for missing the observation and again for giving a false alarm. The impact of this double penalty is related to the
variability of the simulated fields, which tends to increase with the resolution of the model. Numerous methods5

have been proposed in recent years to address this issue. Some methods rely on the use of traditional scores but
applied on filtered fields, estimating the forecast performance as a function of scale and precipitation intensity
(e.g., Ebert, 2008; Mittermaier et al., 2013) while others detect specific features on forecast and verification fields
and compare these features based on their attributes (e.g., Davis et al., 2006; Wernli et al., 2008). Some other
methods rely on the separation of scales with the use of space-frequency tools such as the 2D wavelet transform10

(Vasić et al., 2007).
Multifractals (MF) offer a convenient way to analyze the variability of complex geophysical systems globally over

a wide range of scales. In the context of multifractals, the statistical properties of a field are related to the resolution
by a power-law (Schertzer and Lovejoy, 1987). Universal Multifractals (UM) are a framework based on the concept
of multiplicative cascades, which allows to analyse and simulate a high variability across scales with only a small15

number of parameters with physical meaning (e.g., Schertzer and Lovejoy, 1987; Lovejoy and Schertzer, 2007). In
meteorology, UM have been used to study a large variety of complex natural phenomena such as the distribution
of rainfall intensities at the ground (e.g., Marsan et al., 1996; Gires et al., 2015a, b), atmospheric turbulence (e.g.,
Parisi and Frisch, 1985a; Schertzer and Lovejoy, 2011) or climate change (e.g., Schmitt et al., 1995; Royer et al.,
2008).20

Gires et al. (2011), used the UM framework to compare simulations of Meso-NH, a non-hydrostatic numerical
weather prediction (NWP) model developed by Météo-France, with composite radar images during a heavy convective
rainfall event. This comparison showed that both the radar quantitative precipitation estimation (QPE) and the
model simulations were generally characterized by similar ranges of scaling and agreed quite well with a simple
space-time scaling model.25

Gires et al. (2011)’s work focused on a rather flat area and a single event. It is therefore relevant to study mul-
tifractal behavior of model simulations and radar observations over a more complex terrain in a broader synoptic
context. This work is thus divided in two parts. The first part aims to illustrate the use of multifractals for charac-
terizing regional patterns of precipitation and to relate multifractals to synoptic and topographic features. To this
end a large scale analysis of five years of simulated precipitation intensities from the COSMO numerical weather pre-30

diction model is conducted. The multifractal properties of the corresponding climatology of precipitation intensities
are then studied and related to several regional and synoptic descriptors. The second part of this paper extends the
work of Gires et al. (2011) over Switzerland for three different synoptic situations (snowstorm, stratiform rainfall
and convective summer precipitation) by using simulations of precipitation intensities from the COSMO model run
with different microphysical parameterizations.35
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This article is structured as follows: in section 2 the COSMO model as well as the Swiss radar composite are
briefly described. The studied events as well as the radar data sets and model variables are then described in details,
followed by a summary of the UM framework. In section 3, a climatological analysis of precipitation intensities
simulated by COSMO is performed using the UM framework, in link with external geographic and meteorological
descriptors. In section 4, a spatial and temporal analysis of precipitation intensities on the ground simulated by5

COSMO is performed during three characteristic events. The results are then compared with the UM analysis of
the radar composite. Finally section 5 gives a summary of the main results and concludes this work.

2 Description of the data

2.1 The COSMO model

The COSMO model is a mesoscale limited area numerical weather prediction model initially developed as the Lokal10

Modell (LM) at the Deutscher Wetterdienst (DWD). It is now operated and developed by various weather services in
Europe, including Switzerland. Besides its operational applications it is also used for scientific purposes in weather
prediction and for regional climate simulations. The COSMO model is a non-hydrostatic model based on the fully
compressible primitive equations integrated using a split-explicit third-order Runge–Kutta scheme (Wicker and
Skamarock, 2002). The spatial discretization is based on a fifth-order upstream advection scheme on an Arakawa15

C-grid with Lorenz vertical staggering. Height-based Gal-Chen coordinates are used in the vertical (Gal-Chen and
Somerville, 1975). In the horizontal the model uses a rotated coordinate system where the pole is displaced to
ensure approximatively horizontal resolution over the model domain. Sub-grid scale processes are taken into account
with parameterizations. In particular grid-scale clouds and precipitation are parameterized operationally with a one-
moment scheme similar to Rudledge and Hobbs (1983) and Lin et al. (1983) with five hydrometeor categories: rain,20

snow, graupel, ice crystals and cloud droplets. Snow is assumed to be in the form of rimed aggregates of ice-crystals
that have become large enough to have an appreciable fall velocity. Cloud ice is assumed to be in the form of small
hexagonal plates that are suspended in the air and have no appreciable fall velocity. The particle size distributions
(PSD) are assumed to be exponential for all hydrometeors, except for rain where a gamma PSD is assumed:

N(D) =N0D
µexp(−Λ ·D) m−3mm−1 (1)25

where D is the equivolume diameter, N0 is the intercept parameter (m−3mm−1), Λ the slope parameter (mm−1)
and µ the dimensionless shape parameter
In the one-moment scheme, which is used operationally, the only free parameter of the PSDs is the slope parameter

Λ which can be obtained from the prognostic moment of order three (mass concentrations). The intercept parameter
N0 is either assumed to be constant or in the case of snow to be temperature dependent. The scale parameter µ is30
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equal to zero (exponential PSDs) for all hydrometeors except for rain where it is set to 0.5 by default. Mass-diameter
relations as well as velocity-diameter relations for the precipitating hydrometeors are assumed to be power-laws.
A more advanced two-moments scheme with hail as a sixth hydrometeor category, was developed for COSMO

by Seifert and Beheng (2006). In this scheme all PSDs are assumed to be gamma distributions where the intercept
and slope parameters are free parameters that can be obtained from the prognostic moments of order zero (number5

concentations) and order three (mass concentrations). As this scheme significantly increases the overall computation
time it is currently not used operationally.
In COSMO, the interaction of various microphysical processes and their feedback on the simulated flow fields are

represented by a system of budget equations for qx, the specific mass fraction in kgx per kgair for hydrometeor x.

∂qx

∂t
+ v · ∇qx− 1

ρ

∂P x

∂z
= Sx− 1

ρ
∇ ·Fx (2)10

where Sx represent the microphysical sources and sink per unit mass of moist air, Fx are the turbulent fluxes and
P x denotes the precipitation or sedimentation fluxes defined by P x = ρqxvxT , where v

(j)
T is the terminal fall velocity

of hydrometeor j. The precipitation intensity at the ground is then simply the sum of the sedimentation fluxes of
all hydrometeors at the lowest model level. In terms of terminal velocities COSMO assumes power-laws vT = aDb,
where D is the particle equivolume diameter, for all hydrometeor types except for rain in the two-moment scheme,15

where an empirical relation by Rogers et al. (1993) is used.
Numerically this system of differential equations is treated with a time splitting method, in which the advection

terms v · ∇qx are first integrated over a COSMO time step (20 sec) and the budget equations are then solved for
the microphysical source terms and sedimentation only. In the operational microphysical scheme the source terms
include (1) nucleation and depositional growth of cloud ice, (2) autoconversion of cloud water to rain, (3) collection20

mechanisms, (4) diffusional growth of rain and snow and (5) melting and freezing mechanisms. Details about the
parameterization of all these source terms can be found in Doms et al. (2011).
In the operational set-up, the COSMO model uses a prognostic turbulent kinetic energy (TKE) closure at level

2.5 for the parametrization of atmospheric turbulence. This scheme is similar to Mellor and Yamada (1982), the
main difference being the use of variables that are conserved under moist adiabatic processes: total cloud water25

and liquid water potential temperature. Additionally, a so-called “circulation term” is included which describes the
transfer of non-turbulent sub-grid kinetic energy from larger-scale circulation toward TKE. The reader is referred
to Baldauf et al. (2011) and the model documentation (Doms et al., 2011) for a more in-depth description of the
various COSMO sub-grid parameterizations.

2.2 Climatological study30

In the first part of this work a multifractal characterization of all precipitation intensities simulated by COSMO
during five years is performed. The computed multifractal parameters are then related to various descriptors. A
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Name Description Unit

Average altitude average altitude m

Midpoint latitude latitude of the square center degree north

Midpoint longitude longitude of the square center degree east

Total precipitation Total precipitation during all years mm

Standard deviation
of precipitation

Average standard deviation during timesteps with precip. mm

Wet fraction Fraction of simulated precipitation amounts that exceed a threshold of 0.1 mm
per hour

-

Geopotential average geopotential height at 850 hPa m

Wind magnitude average magnitude of the wind at 850 hPa ms−1

Wind direction average wind direction at 850 hPa degree

Temperature average temperature at 850 hPa K

Potential vorticity average potential vorticity at 850 hPa m2 kg−1 s−1

Table 1. Short description of the three considered precipitation events

total of 43115 hourly timesteps of COSMO simulations in analysis mode covering a period of 5 years (2011 to 2016)
were retrieved from the MeteoSwiss archives. This data is available at a 2 km resolution (0.02◦ angular resolution)
using a set-up known operationally as “COSMO-2” (COSMO, 2015), which was used for operational forecast and
analysis until beginning of 2016. The first and last 100 kilometers of the COSMO-2 domain along both longitudinal
and latitudinal directions were discarded from the analysis in order to avoid border effects. The remaining area is5

shown in Figure 2 (Domain 1). This area was then divided into 209 sub-squares of size 64x64 (128x128 km2 ), with
an overlap of 2/3 between consecutive squares. This ratio has been chosen as a trade-off between representativity
(total number of squares) and computation time.
Besides the multifractal parameters, which will be described later on, 11 local descriptors of the geography and

meteorology were computed from the COSMO data within every square (Table 1).10
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Day Timeline Number
of time
steps

Description

26 March 2010 08:00 - 18:00 144 (12 h) Crossing of a strong cold front causing sudden drop of temperature followed
by heavy graupel and snowfall as well as strong winds

8 April 2014 02:00 - 10:00 144 (12 h) Stationary front with widespread stratiform precipitation over Switzerland
13 August 2015 12:00 - 24:00 144 (12 h) Strong summer convection triggered by the presence of very warm and wet

subtropical air over Switzerland
Table 2. Short description of the three considered precipitation events

2.3 QPE comparison

2.3.1 Simulation of events

In the second part of this work, three precipitation events were simulated with COSMO and compared to the radar
QPE in terms of the multifractal properties of their rainfall intensity fields. These events correspond to three typical
synoptic situations observed over Switzerland. A brief description of the events is given in Table 2 and 500 hPa5

geopotential and temperature charts are shown in Figure 1. To simulate these events, COSMO was used in its
version 5.01 with the standard “COSMO-2” set-up (COSMO, 2015). As was done in similar studies (Bohme et al.,
2009), a spin-up time of 12 hours was used to account for the cold start of the model. For the initial and boundary
conditions, analysis forcings of MeteoSwiss obtained with the COSMO-7 model run at 7 km resolution were used
in order to run the model in analysis mode by correcting it with the most accurate information available at the10

time of simulation. In addition, the events were also simulated using the non-operational two-moment scheme, while
keeping all other namelist parameters unchanged. For all simulations, model outputs were written every 5 minutes
of simulated time, which corresponds to the temporal resolution of the Swiss radar composite.

2.3.2 QPE data

2.415

Precipitation intensities at the ground simulated by the COSMO model were compared with the quantitative precip-
itation estimation (QPE) product from the Swiss operational radar composite. The Swiss radar composite consists
of the plane position indicator (PPI) measurements of the four 1 operational polarimetric C-band radars. The QPE
product of MeteoSwiss is computed in the following way. The linear equivalent radar reflectivity measurement at
up to six 1◦× 1◦× 83m clutter-free radar bins, corrected for partial beam-blocking, are averaged to derive polar20

1The Weissfluhgipfel radar was not yet installed at the time of the considered events
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Figure 1. 500 hPa geopotentials and pressure at mean sea level for the three considered events

1◦×1◦×500m radar bins. Reflectivity measurements are then converted to equivalent precipitation intensity with a
Z −R relationship. The precipitation estimation at the ground is extrapolated from multi-radar observations aloft
using a weighting function that depends on the altitude above the ground and the radar visibility. Corrections for
the vertical profile of reflectivity (VPR) is done with an average profile based on aggregation over a few hours and
over the visible part of the area located less than 70 km around the radar. More information on the MeteoSwiss5

QPE estimation can be found in Germann et al. (2006). Note that the Plaine-Morte radar was only installed in 2014
and was thus not available during the first event (26 March 2010). The Swiss radar composite extends radially up
to 250 km from every single radar (Figure 2). However, the quality of the product is better closer to the radar and
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Figure 2. Situation map showing the theoretical maximum extent of available QPE (light blue), the Swiss operational radars
(blue dots) as well as the region used for the climatological study of COSMO precipitation intensities (domain 1) and the
sub-regions centered over the precipitation events used in the QPE analysis (domains 2 and 3)

in the areas where the radar scanning domains overlap. To perform a comparison of rain intensities a smaller field
of 128x128 km2 was chosen in the center of the domain where the quality of the product is optimal (Domain 2 in
Figure 2). For the second event (8 April 2014) the domain was moved slightly to the left in order to better follow
the evolution of the precipitation event (Domain 3 in Figure 2)

3 The UM framework5

3.1 Multifractality

Let ε be a normalized (divided by its mean) conservative field, which can be one or two dimensional (time series or
spatial map). In the multifractal framework, ελ, the field at resolution λ is obtained by up-scaling the field measured
or simulated at the maximum resolution to the resolution λ which is defined by the ratio between outer scale L and
observation scale l (λ= L/l).10

If ε is multifractal, its statistical moments q scale with resolution:

〈εqλ〉 ≈ λ
K(q) (3)

Where K(q) is the moment scaling function. For a conservative field 〈ελ〉= 1.
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It can be shown (Schertzer and Lovejoy, 1987) that this is equivalent to the following relation between probabilities
of falling below a certain threshold :

Pr(ελ ≤ λγ)≈ λ−c(γ) (4)

where c(γ) is the co-dimension function which is convex and increasing, γ is a so-called singularity, which is
independent of scale. λγ can thus be seen as a scale dependent threshold. The functions K(q) and c(γ) are related5

by a Legendre transform (Parisi and Frisch, 1985b).
The quality of this scaling can be studied with the Trace Moment (TM) method which consists for each moment q

in a log-log plot of the up-scaled fields as a function of the resolution λ, the slope being the moment scaling function.
The coefficient of determination corresponding to the best fit-line of the TM analysis performed with q = 1.5, which
will be referred to as R2 in this work, is often taken as an indicator of the quality of scaling (R2 ∈ [0,1]).10

In the universal multifractal framework (Schertzer and Lovejoy, 1987), the moment scaling function for a conser-
vative field Kc(q) can be fully characterized with only two parameters, α and C1:

Kc(q) = C1

α− 1 (qα− q) (5)

C1 is the mean intermittency co-dimension and measures the clustering of the (average) intensity at increasing
scales. C1 is equal to zero when the field is homogeneous. α is the multifractality index and measures the clustering15

variability with respect to the intensity level, α ∈ [0,2].
Figure A.1 in the appendix illustrates the effect of varying α and C1 on randomly generated isotropic conservative

multifractal fields. One can see how increasing α, increases the variability within non-zero intensity regions whereas
increasing C1 decreases the intermittency and makes the field look more spatially homogeneous.
The size of the sample limits the insight one can get of a statistical process. For multifractal processes, if Ns20

samples are available this will result in a maximum singularity γs and moment order qs beyond which the values of
the statistical estimates of the co-dimension and moment scaling function are not considered as reliable ((Schertzer
and Lovejoy, 1987), (Lovejoy and Schertzer, 2007)). It can be shown that in the multifractal framework we have:

qs =
(
D+Ds

C1

) 1
α

and γs = α′C1

(
D+Ds

C1

) 1
α′

(6)

where 1
α + 1

α′ = 1, D is the dimension of the field (1 for a time series, 2 for a spatial field) and Ds is the sampling25

dimension defined by Ns = λDs .
Example of the use of γs can be found in Royer et al. (2008) who investigated the impact of climate change on

rainfall extremes using a climate model. They observed an increase of γs over time which could result in a possible
increase in the intensity of rainfall extremes over the next hundred years. Douglas and Barros (2003) and Hubert
et al. (1993) also used the maximum singularity γs in the estimation of probable maximum precipitation.30
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In order to perform a multifractal analysis the field ε needs to follow the following properties

1. The size N of the field needs to be the same in all dimensions i.e. ε ∈ RND .

2. N needs to be a power of two.

In this work, the UM parameters are estimated with the Double Trace Moment (DTM) method (Lavallée et al.,
1993). This method relies on the fact that in the context of UM, the moment scaling function K(q,η) of the field5

ε
(η)
λ , obtained by raising the field ε at a power η and up-scaled at resolution λ can easily be expressed as a function
of α (Lavallée et al., 1993):

〈
(
ε

(η)
λ

)q
〉 ≈ λK(q,η) = λη

αK(q) (7)

α is thus the slope of the linear part of K(q,η) as a function of η in a log-log plot.

3.2 Non-conservative fields10

In the case of a non-conservative field φ, we have 〈φλ〉 6= 1.
One way to consider non-conservative fields within the UM framework it to assume that they can be expressed as:

φλ = ελλ
−H (8)

whereH is the non-conservation parameter (H = 0 for conservative fields) and ε is a conservative field characterized
by a moment scaling function Kc(q) with parameters C1 and α.15

The moment scaling function of the non-conservative field φλ is then given by:

K(q) =Kc(q)−Hq (9)

H can be related to the spectral slope β by:

β = 1 + 2H −Kc(2) (10)

where β is the exponent of the power law that characterizes the relation between power spectrum and wave20

numbers:

E(k)∝ k−β (11)
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Hence the larger the value of the slope β, the shorter the decorrelation range. If β is larger than the dimension of
the field, the field is non-conservative.
ελ can be estimated from φλ with a fractional integration (for H < 0) or differentiation (for H > 0) of order H,

which is equivalent to a multiplication by kH in the Fourier space. In practice however, for H > 0, particularly
when H > 0.5, ελmax (the field ε at the maximum resolution) is often approximated by the renormalized absolute5

fluctuations of the field.

ελmax(i) = |φλmax(i+ 1)−φλmax(i)|
〈|φλmax(i+ 1)−φλmax(i)|〉 , i= 1,2, ..,N (12)

Figure A.2 in the appendix illustrates the effect of H on isotropic multifractal fields, with constant α and C1. H
can be considered as a kind of smoothness parameter, that denotes the order of integration (H < 0) or differentation
(H > 0) needed to obtain the observed field from a direct multifractal cascade process.10

Table 3 provides an overview of all multifractal parameters as well as their interpretation.

3.3 Spatio-temporal analysis

The multifractal analysis of time series of two-dimensional fields, such as the ones considered in this study, can be
performed both in space, by considering an ensemble of two-dimensional fields (one sample for every time step)
or in time, by considering an ensemble of one-dimensional time series (one sample for every coordinate in the15

two-dimensional field).
A simple spatio-temporal scaling model (e.g., Marsan et al., 1996; Deidda, 2000; Macor et al., 2007; Radkevich

et al., 2008) is based on the hypothesis of an anisotropy coefficient between space and time:

Kspace(q) = Ktime(q)
1−Ht

(13)

where Ht is the anisotropy coefficient between space and time, which in the theory of Kolmogorov (Kolmogorov20

(1962),Marsan et al. (1996)) is equal to 1/3. This result implies identical α and proportional C1 and H parameters:

C1,space

C1,time
= Hspace

Htime
= 1

1−Ht
(14)

4 Climatological analysis of multifractal parameters

4.1

Within all 209 selected squares (Section 2.2), the multifractal parameters α, C1, β25

, H, γs, R2 and Df were computed both in space, using an ensemble average, i.e. by taking the mean parameters
over all the available realizations of the process. In space we consider every timestep to a be a realization of a
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Parameter Name Interpretation

α
multifractality index When α= 0, the field is mono-fractal which means that a single fractal dimension

is sufficient to fully characterize the field. The higher α, the larger the variability
within areas with precipitation.

C1
mean intermittency Measures how concentrated the average field is, C1 = 0 for a uniform field. The

larger C1, the larger the intermittency of the field. High C1 associated with high
α implies strong extremes.

β
Negative of the spectral
slope

The larger β the shorter the decorrelation range of the data. If β = 0, the power
spectral density is the one of white noise, meaning there is no decorrelation. When
β is large, large scale phenomena have a large contribution to the variability of
the data, which means that the fields have a larger correlation range (smoother
fields).

H
non-conservation parameter Scale-independent proportionality factor relating a conservative field to the non-

conservative field (a field for which the average is not scale independent). Can be
seen as a smoothing factor. If H is positive, the field is too smooth and one needs
to differentiate it to retrieve a conservative field. If H is negative, the field is too
discontinuous and one needs to integrate it to retrieve a conservative field.

γs

maximum singularity Maximum observable singularity (scale independent threshold) from the data.
Large γs implies that stronger extremes are present in the data.

R2

TM coefficient of determina-
tion

Coefficient of determination of the relation between a given moment of order q and
the scale (Equation 3) on a loglog plot. If the field is multifractal, then the plot
is a straight line with slope K(q). In practice q = 1.5 is often used as a reference
to determine R2. R2 can be seen as an estimation of the quality of scaling and of
the viability of the multifractal approach for the data.

Df

Fractal dimension Factor relating the number of rainy observations at a given scale to the scale. The
larger Df , the more uniform the binary precipitation field (for a threshold of zero)
is.

Table 3. Overview of all multifractal parameters
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two-dimensional geophysical process and in time, we consider every COSMO gridpoint to be a realization of a one-
dimensional geophysical process (time series). For the analysis in space this implies 43115 realizations of a 64x64
2D field and for the analysis in time 64x64 (= 4096) realizations of a timeserie of length 32768 (215 which is the
closest power of 2 of 43115). Analysis of the overall temporal power spectrum (not displayed) reveals the presence
of a strong peak centered around a resolution of 3 hours, which is very likely to be caused by the nudging scheme5

of COSMO (assimilation within the model is performed every 3 hours). To remove the effect of the nudging in the
estimation of multifractal parameters, only the larger time scales (from 8 hours to 5 years) were thus considered.
In
order to test the effect of zeros on the overall analysis, the multifractal parameters were also estimated in space by

using only the fields where there is precipitation over at least 50% of the surface2. This did however not impact the10

main conclusions in terms of correlations and spatial structure of the multifractal parameters. Hence the subsequent
study was performed on the
raw precipitation fields without any kind of filtering.

4.1 Correlation study

The relationship between MF parameters evaluated in time and space and the descriptors detailed in Table 1 was15

studied first by looking at the non-parameteric (Spearman) correlations. Figure 3 shows the correlation plots for the
MF parameters in space and time.

4.2

The following conclusions can be drawn from the correlation plots. Df is strongly correlated with the latitude
indicating that the fractal dimension of rain is higher at higher latitudes (i.e. cooler climates). Df is also quite20

strongly correlated to the wet fraction: the more often it rains, the higher the fractal dimension. Similarly C1 also
has a strong latitudinal trend and tends to decrease in regions with a high wet fraction (less intermittency) which is
typically the case in cooler climates. α also seems to also have a latitudinal trend though not as strong as for C1 and
Df . The link between α and the standard deviation is not obvious since the standard deviation is a second order
statistic while the UM parameters are based on all moments. C1 and γs tend to decrease with the altitude while β25

and H tend to increase. This could be due to orographic effects, precipitation over mountains being both dominated
by large scale circulations and generally abundant. Synoptic descriptors such as the geopotential, the temperature
and the potential vorticity do not seem to play a direct role on the multifractal parameters of precipitation and the
observed correlations result merely from their correlations with the latitude and the altitude.
The correlation values are roughly consistent in time and in space, although the ones in time are generally higher.30

In time the correlation between β and H is much lower than in space. This can be explained by the lower values of
β in time. Because of this and as a consequence of Equation 10, H becomes more correlated with α and C1.

2In time, it would not be possible to filter out non rainy timesteps, as it would break the continuity of the time series.

13



0.8

0.4

0.0

0.4

0.8

C
or

re
la

tio
n

C
1 H s

R
2 D
f

A
vg

 a
lt.

La
t

Lo
n

T
ot

. p
re

c.

S
td

 p
re

ci
p

F
ra

c.
 w

et

G
eo

po
t

M
ag

. w
in

d

D
ir.

 w
in

d

T
em

p.

P
ot

. v
or

t.

Pot. vort.

Temp.

Dir. wind

Mag. wind

Geopot

Frac. wet

Std precip

Tot. prec.

Lon

Lat

Avg alt.

Df

R2
s

H

C1

M
F

 in
 s

p
ac

e
M

F
 in

ti
m

e

Figure 3. Correlation plots showing the Spearman (rank) correlation between MF parameters and descriptors. On the left
with MF parameters estimated in space and on the right with MF parameters estimated in time. Note that the part on the
right of the correlation plot in time has been truncated since it is the same as on the correlation plot in space. Correlations
that are not statistically significant (for a significance level of 2.5%) are left in white.

In summary, the fractal dimension Df is proportional to the fraction of wet simulations, which increases with
the latitude and to a lesser extent with the altitude. The parameter β, which is proportional to the correlation
range follows a similar trend, whereas the mean intermittency C1 follows the inverse trend. In space α is difficult to
characterize whereas in time it follows Df and β to a certain extent.
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4.2 Hierarchical clustering

A hierarchical clustering of all 209 areas was performed based on the value of their descriptors, using the Ward
linkage method (Ward, 1963). Investigation of the dendrogram gives an optimal number of classes of either 3 or 6.
Figure 4 shows the resulting classification for three different classes.
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Figure 4. Result of the hierarchical clustering of the 209 regions into three classes

As could be expected, the clustering of the meteorological and geographic descriptors results into a meaningful5

spatial distribution. Indeed, all classes are spatially very coherent, with class 1 corresponding mostly to the Alpine
regions, from the Mediterranean sea to Austria, class 2 corresponding mostly to the cooler temperate regions in the
east of France and south of Germany (Cfb class in the famous Köppen (1936) climate classification) and class 3
corresponding to the warmer Mediteranean regions in the south of France, in Italy and the Balkans (Csa class in
the Köppen-Geiger classification).10

The distributions of MF parameters within these clusters as illustrated in Figure 5 highlight some obvious dis-
crepancies in MF parameters between clusters. In space, for example α, H, β and Df seem to be much lower in
cluster 3 than in the others while C1 and γs are much higher. Clusters 1 and

4.3

2 do not show such spectacular differences but differ nonetheless by stronger values of Df and slightly larger values15

of γs within cluster 2. In time, cluster 1 (Alpine regions) is characterized by high values of α and β and low values of
C1, which indicates frequent rainfall and a large variability in intensities. Clusters 2 and 3 differ by their low values
of β and H indicating that, compared with alpine regions, the small temporal frequencies play a larger role in the
overall variability.

15
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Figure 5. Boxplots showing the distributions of MF parameters within the clusters. MF parameters estimated in time are
shown with a dashed pattern. Note that the left y-axis applies to MF parameters in space and the right y-axis (in red) to MF
parameters in time (the boxplots indicated with a red hatch).

The statistical significance of these discrepancies was confirmed both with the MANOVA (multivariate anova) and
the non-parameteric Kruskal-Wallis tests. All test were performed with a significance level of 2.5%. Note that the R2

was not considered in this analysis as it is more a confidence indicator than a proper characteristic of an area. The
MANOVA reveals that the multivariate means of MF parameters (both in time and space) are significantly different
between the three clusters as well as between all three pairs of clusters taken separately (1 vs 2, 2 vs 3 and 1 vs 3).5

The non-parameteric Kruskal-Wallis test performed separately for all MF parameters reveals that distributions of
all MF parameters are significantly different between the three clusters. A pairwise comparison (1 vs 2, 2 vs 3 and
1 vs 3) reveals that in time all MF parameters are significantly different between all pairs of clusters, except for Df

which is not statistically different between clusters 1 and 2. In space the situation is similar but this time it is C1

and γs which are not significantly different between clusters 1 and 2.10

To summarize, the statistical analysis shows that the multifractal parameters of precipitation intensities are
significantly different within the three climatological clusters.
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4.3 Spatial structure of MF parameters
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Figure 6. Spatial representation of the MF parameters estimated in space for all areas. The special colormap for H has been
chosen to separate positive and negative values and highlight non-conservative areas where |H|> 0.5. Note that as before,
the size of the represented squares is not to scale. The colors in the background correspond to the hierarchical classification.
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The analysis of the spatial structure of MF parameters in space reveals that α is particularly large over Bavaria, the
Piemont region of Italy and the Champagne region of France. However these “clusters” of large values are somewhat
difficult to relate to other trends, especially in terms of descriptors. Generally the Swiss Alps are characterized by
relatively low values of α. In terms of C1 there is a clearer trend, with a strong latitudinal and altitudinal negative
gradient, which can be related to an increase in5

overall precipitation amounts. In terms of β, the regions over Italy show smaller values, which tend to indicate
that precipitation events exhibit strong high-frequency components (such as for example short convective storms).
Over the Alps and the more continental regions, where the precipitation systems are mostly frontal, β increases. The
trend is similar for H which is related to β. For γs, we observe a similar trend to C1 with a decrease with altitude10

and elevation. This indicates that precipitation extremes are stronger in southern regions. For R2 it is difficult to
identify a proper spatial organization, except that the foothill regions of the Alps generally have large R2 values.
Finally for Df , there is mostly a latitudinal trend. The value of Df increase with the latitude, which can be related
with the decrease in the number of zeros (smaller C1 and generally larger α).

15

In time (not displayed), similar conclusions can be drawn for C1, Df , γs and β. For the other parameters the
latitudinal trend seems to be much more visible than in space, especially for H and R2. R2 seems to be generally
larger in time than in space with values close to 1. Unlike in space, for α in time there is a clearer dependency on the
altitude. α in time tends to be larger in mountainous regions, indicating a larger temporal variability of precipitation
intensities in these regions.20

To summarize, the multifractal signature of precipitation is related both to the topography, the climate and the
typical synoptic conditions and as such can be used as a way to characterize precipitation fields and to assess the
realism of simulated atmospheric variables.

5 Comparison of simulated precipitation with radar QPE

The previous section presented the MF approach in a rather climatological perspective, that helps to link meteorol-25

ogy/geography and MF parameters. In the present section, we evaluate the quality of the precipitation simulated
by COSMO with two different microphysical schemes by means of the UM tool and by comparison with quanti-
tative precipitation estimations from the Swiss radar network. Instead of simply retrieving simulations from the
MeteoSwiss archives this comparison requires to actually run the COSMO model at the radar temporal resolution
in a very expensive set-up (two-moments scheme). As such a climatological comparison as in the first part is not30

feasible from a computational point of view. Because of this and in order to better capture the microphysical aspects,
the comparison is now conducted at the event scale.
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6

5.1 Scaling analysis

A multifractal comparison of the precipitation fields simulated by COSMO in its one-moment and two-moments
schemes with the QPE product from the Swiss radar composite was performed. As a first step, a spectral analysis
was performed both in time (ensemble of one-dimensional time series of precipitation intensities) and space (ensemble5

of two-dimensional maps of precipitation intensities).

128

Figure 7. Spectral analysis in space of the QPE products during the three events. Bold lines are best-fit lines. The associated
value of β is given in the legend. Note that the maximal represented observation scale, which corresponds to the Nyquist
frequency, is twice the maximal resolution.

Figure 7 shows the spectral analysis in space for all events and data. A best-fit line is shown for the radar QPE
from which the value of β is computed. β is equal to −m, where m is the slope of the best-fit line.
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For the 26 March 2010, we observe a single scaling regime for the radar QPE, with a good scaling both at large
(16-64 km) and small scales (2-16 km), as the spread around the line is relatively small. For the model intensities,
we observe strong discrepancies in spectral slope with the radar QPE at smaller scales (4−8 km) which are not well
represented. A possible explanation for this break in scaling properties of the model, is the fact that large scales
are dominated by the dynamics of the model (primitive equations of the atmosphere) whereas smaller scales are5

dominated by the parameterizations of sub-grid phenomena (turbulence, convection). However, even at larger scales
(8-64 km), the agreement between radar QPE and model simulations is still quite poor in terms of spectral slope.
Obviously, for this rainfall event, COSMO is not able to recreate the spatial structure of precipitation observed by
the radar.
For the 8 April 2014, the scaling is similar between radar and model precipitation intensities, possibly indicating10

that for this stratiform rain event, parameterizations and dynamics match better. Both radar and simulations show
a weak scaling break at around 8 km.
For the last event, we observe again a good scaling for the radar QPE and a much worse scaling on the model

precipitation intensities, but in contrast with the first event, this time the larger scales (> 16 km) are not well repre-
sented. Indeed, inspection of the time series of precipitation shows that COSMO is not able to locate accurately the15

convective cells of precipitation and generally overestimates their extent. In terms of microphysical parameteriza-
tions, we observe that the spectral slopes of the one-moment scheme are generally closer to the ones obtained from
the radar QPE. This is especially visible for the last (convective) event, where the COSMO simulations show weak
scaling (β close to zero). This implies that the simulated rainfall intensities are dominated by small-scale features,
while large scale features are underestimated. Note also that for large scale features, the power density function of20

COSMO simulations correspond to white noise, indicating that the COSMO model has a shorter decorrelation range
than the radar data.
The spectral analysis in time (not displayed) generally shows similar results, but with larger values of β and overall

better scaling (less spread).
Table 4 displays the non-conservation parameters H evaluated for time series of precipitation intensities (analysis25

in time) and for spatial fields of precipitation intensities (analysis in space), for both the radar QPE (in regular font),
the COSMO one-moment scheme (in bold) and the COSMO two-moments scheme (in italic). A value of H larger
than 0 indicates that the field is smoother than the observed field from a direct multifractal cascade process and a
value of H smaller than 0 indicates that the field is too discontinuous. Taking the radar as reference, one sees that
the convective event is characterized by the largest values of H followed by the snowfall event and the stratiform30

event. When comparing H between COSMO and the radar QPE, one observes that H in time is always larger with
the one-moment than on the radar QPE, indicating that the temporal structure of the simulated fields is likely to
be too smooth. In space the trend is not as obvious and the match between radar QPE and one-moment scheme
seems better.
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Overall, it is worth noticing that the two-moment scheme almost always has smallerH values than the one-moment
scheme, which indicates that it is more discontinuous both in time and space.
In order to account for the fact that the fields are mostly non-conservative (|H|> 0.5) and to treat all fields in

a consistant way, all further analysis was performed on fluctuations of the original fields (Equation 12). Note that
while this does not result in perfectly conservative fields, it still makes them more conservative since all values of5

|H| are smaller than 0.5 after taking the fluctuations.

26 March 2010 8 April 2014 13 August 2015

Hspace 0.411/0.432/0.752 0.342/0.500/0.260 0.651/0.612/0.332
Htime -0.044/0.615/0.262 0.232/0.938/0.238 0.696/0.818/0.265

Table 4. Values of the non-conservation parameter H in time and space for all events, for the radar QPE, the COSMO
one-moment scheme and the COSMO two-moment scheme.

Figure 8. Scaling analysis of the QPE product during the three events. Bold lines are best-fit lines taking into account a
possible scaling break.

Figure 8 shows the trace-moment (TM) analysis in time and space of the three events. For the two first events a
scaling break can be observed at large scales for the COSMO intensities (64-128 km). These scales were excluded from
the analysis, due to the limited number of points in this scale range. For the first event, in order to be consistent with
the observations of the spectral analysis, the scale range 2-8 km, which does not scale well on COSMO simulations10

when compared with radar observation, was excluded from the analysis. For the last event, two scaling regimes are
observed for the COSMO intensities, (2-16 and 16-128 km), which were studied separately. On the opposite, for the
radar QPE no scaling break is observed in space. In time, a weak scaling break can be observed both for radar and
COSMO intensities at a resolution of around 160 minutes, which corresponds roughly to the assimilation frequency
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of the model (every three hours). Hence results are discussed only for the time scales between 5-160 min (smaller
scales). Note that in the considered range of scales the quality of scaling measured by the R2 parameter is quite
good (average R2 in space = 0.963 ± 0.024, in time 0.956 ± 0.017. This implies that the uncertainty associated with
the α and C1 parameters retrieved with the DTM method is small.

5.2 Spatio-temporal analysis5

Values of α, C1 and γs obtained with an analysis in time and in space of the three events are given in Figure 9.
For the first two events, all parameters are computed only on the smaller scales (up to 64 km in space and up to
160 minutes in time), in order to account for the observed scaling break. For the last event both scale ranges are
considered.
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Figure 9. α, C1 and γs parameter values obtained with an analysis in time and space for the three events on the fluctuations
of the precipitation intensities. For the last event both the parameters at large and small spatial scales are displayed. The
numbers in blue are the space/time ratios for α and C1

For the first event, both COSMO microphysical schemes give very similar multifractal parameters and the dis-10

crepancy with the radar QPE is quite important. In space, it can be observed that α is slightly smaller in the
COSMO simulations than on the radar QPE. It is clear as well that the simulated C1 is too small compared with
the radar observations. This tends to indicate that COSMO is underestimating the spatial intermittency. Gener-
ally, the observed discrepancies in α and C1 tend to indicate that the spatial structure of the simulated fields is
too smooth and lacks the variability observed by the radars. In time, the agreement is better for C1 but COSMO15
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has clearly higher values of α indicating a larger temporal variability than the radar QPE. For this event, there
is a noticeable discrepancy between the maximum singularity γs in space obtained from the radar QPE (0.721)
and the γs obtained from the model (around 0.6 for both schemes). This indicates that during this event COSMO
had a tendency to under-estimate extreme values, which might be caused by its difficulty to accurately simulate
snowfall events, since COSMO does not consider partially melted snow (Frick and Wernli, 2012). Note that QPE in5

snow is very difficult and it is likely that the radar QPE itself is already underestimating precipitation intensities
(Speirs et al., 2016) which would make this difference in γs even more noteworthy.
For the stratiform rain event, the multifractal parameters of the COSMO simulations are in better agreement

with the radar QPE. In time, the two-moment COSMO scheme gives values that are in relatively close agreement
with the radar QPE and in this regard outperforms the one-moment scheme. COSMO simulations show generally10

smaller values of α and smaller values of C1 than the radar QPE which is a trend that is observed for all events.
For the last convective event, two scaling regimes are considered in space, larger scales (16-128 km) and smaller

scales (2-16 km). As already observed in the spectral analysis there is a better agreement between the radar obser-
vations and the simulations with the one-moment scheme at smaller spatial scales. In time however, the temporal
intermittency of COSMO is smaller than for the radar QPE, which can be explained by the fact that COSMO15

generally overestimates the extent of the convective systems. Compared with the one-moment scheme and the radar
QPE, the two-moment scheme has a smaller α in space but a larger α in time, as well as a a smaller intermittency
in time and space.
In summary, the observations of the spatio-temporal analysis are consistent with the spectral and scaling analysis

where (1) a strong discrepancy in scaling behaviour was observed between COSMO and the radar QPE at small20

scales for the first event,(2) a better scaling of the model precipitation intensities was observed for the second event,
(3) a discrepancy in scaling at large scales was observed between COSMO (especially for the two-moment scheme)
and the radar QPE for the third event.
Overall, it can be observed that except for the first event where both schemes give similar values, the two-moment

scheme is usually characterized by a larger C1 than the one-moment scheme, both in time and space, whereas in25

terms of α there is no recurring trend. For the multifractal parameters α and C1, there is generally a good agreement
between radar observations and simulations on the range of scales where the model exhibits a good scaling behaviour,
with none of the two microphysical schemes performing significantly better than the other. The two-moment scheme
however is generally characterized by a slightly larger maximum singularity γs indicating a better capacity to simulate
extreme values. This is especially visible in the last convective event. In terms of space/time ratios, the observed30

ratios differ significantly from the theoretical model: the α space/time ratio is always larger and the C1 space/time
ratio always smaller than the theoretical values (1 and 1.44 respectively).

5.3
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Gires et al. (2011) found different breaks for a Cevenol event (strong precipitation events occuring in Fall in the
South of France), i.e. roughly 16 km in space and 1h in time, and a better agreement with a simple space time model
but only for large scales which are not the primary focus of this study. These differences could be associated with
the fact that the topography of the area analysed in this paper is more pronounced than in Gires et al. (2011). It
should also be noted that the values of UM parameters α and C15

on the relevant range of scales exhibit a better agreement between observations and model simulations in this
paper.

5.3 Timeseries of multifractal parameters

To study the time series of multifractal parameters, we will focus on the third (convective) event, which shows the
largest temporal variability. Comparison with the other events showed that the conclusions drawn for the third10

event in terms of discrepancies between radar and model multifractal parameters can be generalized to the second
(stratiform) event and to a lesser extent to the first event (snowstorm).
Figure 10 shows the timeseries of α and C1 throughout the third (convective) event for the COSMO and the radar

QPE precipitation intensities, as well as some illustrative precipitation fields that will be discussed.
13 August 201515

For the convective event, four different phases can be identified. In the first short phase (12:00-14:00), observations
and simulations agree relatively well in α and C1. This period corresponds to the initial stages of the event when
only a few isolated cells are present (panel (a) in Figure 10).

In the second phase (14:00 - 17:00), a large convective system is crossing the domain on the radar observations,
which causes a strong increase in α and a decrease in C1. This convective system is however located more in the20

south on the simulation and enters the domain only at around 15:30 (panel (b) in Figure 10).
During the third phase (17:00-21:00), the large convective system is visible on the simulated field, whereas on

the observed radar fields, the most intense convective cells are already out of the domain. This causes a larger α
on the simulations than on the observations (panel (c) in Figure 10). Finally in the last phase (21:00-24:00), a new
convective system is visible on the observed field but is more or less absent on the simulated fields. This causes a25

discrepancy, the simulated fields having a smaller α and a larger C1 than the observations (panel (d) in Figure 10).
For this event, the spatial and temporal shifts of the convective system simulated by COSMO with respect to the
radar observations is the main cause in the bad scaling observed at larger scales.
This succession of phases is also clearly visible in the timeseries of wet area fraction (Figure 11)
For the second event (stratiform rain), the conclusions are similar, discrepancies in multifractal parameters between30

simulated and observed precipitation intensities, are caused primarily by temporal and spatial shifts in the simulated
precipitation patterns. The effect of such shifts on the multifractal analysis hints at the possibility of a further analysis
based not on a fixed study domain but on a study domain following the precipitation system, in a way similar to
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Figure 10. α and C1 timeseries during event 3.

Nykanen and Harris (2003). This would allow to gain a better insight into the representation of small-scale structures
by the model.
For the first event (snowstorm), an additional bias comes from the fact that the model tends to miss small-scale

structures of precipitation particularly over mountainous regions (c.f. Figure 12), which can explain the observed
strong difference in scaling between radar and model at smaller scales.5
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Figure 11. Fraction of wet area during the event of the 13 August 2015

Figure 12. One snapshot of precipitation during the first event (snowstorm) illustrating how COSMO tends to miss small-
scale precipitation cells (in the center of the domain). This behaviour is generalized during the whole event.

6 Conclusions

In this work we performed a spatial and temporal analysis of precipitation intensities simulated by the COSMO
NWP model, in the context of the universal multifractal (UM) framework which allows to represent the variability
across scales with a limited number of parameters.
The first part of this work focused on a climatological study of precipitation intensities simulated by COSMO5

in its operational analysis mode using multifractals. Analysis of the correlations between multifractal parameters
and external meteorological and topographic descriptors reveals that the fractal dimension (Df ) and the mean
intermittency (C1) are strongly correlated to the fraction of rainy simulations. Additionally the fractal dimension
tends to increase and the mean intermittency to decrease with the latitude, which indicates that rainfall fields are
more homogeneous at higher latitudes. The effect of topography is visible in the values of C1 and the maximum10

singularity γs (related to extreme values) which tend to decrease with altitude as well as with in the values of H
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and β which tend to increase with altitude. This indicates a smaller intermittency and less rainfall extremes in
mountainous regions as well as smoother rainfall intensity fields, which can be linked to the dominance of large-scale
orographic effects. A hierarchical clustering was performed based on the meteorological and topographic descriptors.
The resulting classification into three classes was shown to correspond well with the famous Köppen (1936) climate
classification. Distributions of multifractal parameters within these three classes were found to be statistically signif-5

icantly different, indicating that the multifractal signature of rain is indeed climate dependent. Finally, investigation
of the spatial structure of multifractal fields confirmed the observations of the correlation analysis, namely that
the values β and H are mostly influenced by the altitude (simulated precipitation tends to be smoother at higher
altitudes) and Df and C1 are mostly influenced by the latitude (the intermittency decreases with the latitude).
The second part of this work focused on three different events, one cold front associated with heavy snowfall,10

one stationary front associated with stratiform rain and a stable atmosphere and one summer convection event
with heavy rain. All events were simulated at a 2 km resolution with both the standard operational one-moment
microphysical parameterization of COSMO and a more advanced two-moment microphysical scheme. A comparison
between the multifractal signature of precipitation intensities at the ground simulated by COSMO with the Swiss
radar composite data was performed. Whereas the radar data shows one single scaling regime over the studied spatial15

scale ranges (1-128 km), the COSMO simulations display scaling breaks for the first and the last event. It can be
observed that during the snowstorm event COSMO is unable to properly reproduce radar observations at small
scales, which might be caused by the intrinsic difficulty of simulating solid precipitation. During the last convective
event, the opposite can be observed, and COSMO is struggling to reproduce the larger scales, due to its difficulty to
locate properly the convective system in time and space during this event. In the temporal scales, a scaling break20

is observed both for the radar and COSMO simulations at around 3 hours, which corresponds to the assimilation
frequency of the model. Comparisons of the one-moment and two-moment COSMO microphysical parametrizations
show that the fields simulated by the two-moments scheme tend to display a larger intermittency and variability
than the one-moment scheme. However, this does generally not translate into a better agreement of multifractal
parameters with the radar composite, except during the stratiform event where the two-moment scheme performs25

slightly better.
Ultimately, the multifractal framework can be used to identify the scale ranges in which the model is able to

simulate realistic fields of water contents and as such this technique can be used as a diagnostic tool for model
evaluation.
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Appendix A: Visual example of the effect of multifractals on the structure of a field

Figure A.1. Illustration of the effect of α and C1 on randomly generated fields. Blue pixels correspond to zero intensity,
whereas pixels with non-zero intensity are shown with a greyscale colormap. Taken from Lovejoy (2017)

Figure A.2. Illustration of the effect of H on randomly generated fields for α= 1.2 and C1 = 0.05. Blue pixels correspond to
zero intensity, whereas pixels with non-zero intensity are shown with a greyscale colormap. Taken from Lovejoy (2017)
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Appendix B: Spatial representation of climatological descriptors
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Figure B.3. Spatial representation of the location of all areas used in the climatological study of multifractal parameters as
well as the corresponding local descriptors. Note that the squares are mere indicators of the location of the center of all areas
and their size is not in scale with their real sizes. The colors drawn below the squares correspond to the classification detailed
in Section 4.2.
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