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The authors propose the use of the Wasserstein distance in order to discriminate dif-
ferent dynamical systems from their attractors, notably for the case of climate systems.
| found the paper really interesting. Moreover, the adoption of such new metric is well
motivated and seems really promising for future climatic applications. Thus, | recom-
mend the publication of the manuscript. | have only a general comment and a few
specific ones (see below) that could be useful to improve the manuscript.

General comments

Did the authors studied the robustness of the Wasserstein distance to variations of the
size of the boxes B,? | think this is an important point, in particular once that their
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method will be applied to realistic systems. Even though an explicit numerical study is
not requested, a discussion of this aspect would be really appreciated.

Response: The value of 0.1 gives 40 to 60 bins on each axis, assuming that the attrac-
tor lives in a box of [—1;3] x [—3;3] x [-3;3]. This means that the volume is divided
into 40 x 60 x 60 boxes. This number is the same order of magnitude as the number
of gridcells in the NCEP reanalysis around the North Atlantic region, should one be
interested in the climate attractor of that region (e.g. Faranda et al (2017), ). We also
tried values of 0.05, 0.2 and 1.0 for the size of the boxes (so, a factor 2 for the two first,
and one scale up for the last) for the protocol of Section 3. For all values, the maximal
variation of standard deviation is 0.01, and the detection is not affected. For a size of
0.05 and 0.2 the maximal variation of the median is 0.03. For the size 1.0, the maximal
increases of median of box plot of winter (resp. summer) against itself is 0.22 (resp.
0.18), but the difference with the median of winter against summer is at least equal to
0.3.

Modification 1 (Page 5, line 5): We have added the sentence (end of section 3.1):
“We chose a bin length of 0.1 for the Lorenz attractor. Therefore 40 x 60 x 60 bins cover
the attractor, which remains in a [—1; 3] x [—3; 3] x [—3; 3] box. This number of bins is
comparable to the number of gridcells that cover the North Atlantic region in the NCEP
reanalysis (or most CMIP5 model simulations). This example refers to a few papers
dealing with climate attractor properties (e.g. Corti S. et al (1999), Faranda D. (2017)).

Modification 2 (Page 7, line 15):The sentence “This protocol was also applied for bin
sizes of 0.05, 0.2 and 1.0. For 0.05 and 0.2, the maximal variation of median (resp.
standard deviation) of Wasserstein distances is 0.03 (resp. 0.01), so the distributions
are indistinguishable in practice. For a bin size of 1.0, the maximal increase of the
median is 0.22, but the difference with the median of winter against summer is at least
equal to 0.3.” has been added at the end of Sec. 3.3.
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Specific comments

(2 Distance between measures - line 14): It could be not easy for any reader how you
go from attractors to mass distributions. It would be great to have a short introduction
to the definition and use of invariant measures in phase space.

Response: We agree with you.

Modification: We added the sentence "The measure of a sub region of phase space
is the probability of a trajectory of the system to go through the region. The invariance
is characterized by the conservation of the volume by the dynamics of the system
Ruelle (1989)" in Sec. 3.1.

(2 Distance between measures - line 22): Why the authors did not defined (and
discuss the differences respect) the Mahalanobis distance?

Response: The Mahalanobis distance was just given as an example of possible
distances used in climate sciences. We removed the reference to the Mahalanobis
distance, since we do not make any comparison with it.

(2 Distance between measures - line 11 - second paragraph): It would be inter-
esting to know why the authors choose network simplex algorithms to compute the
distance. Could be explained why they are better than other classical choices like, for
instance, simulated annealing algorithms?

Response: The optimal transport literature classically mentions two kinds of meth-
ods: Network Simplex and Entropy Regularization. These two approaches have the
advantage to be computationally fast. The Network Simplex is generic but the Entropy
Regularization needs a control parameter to be adapted for each system. Thus we
have decided to use the Network Simplex for this paper. Annealing algorithms require
also to test several control parameters (like acceptance probabilities and temperature)
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depending on the measures considered. This could be problematic for the computation
of thousands of distances between various objects.

Modification (Appendix A): An explanation has been added in Appendix A.

(Algorithm 2): Maybe the authors could give a name to the variable: “total number of
boxes B,” like, for example, K.

Response: The variable “A” (in Require/ Ensure of Algorithm 2) is the total number of
boxes.

Modification (Algorithm 2): To clarify, we have replaced A by 40 x 60 x 60 (the total
number of boxes of size 0.1 in the domain [—1; 3] x [—3; 3] x [—3; 3]) and explained that
1q > 0 for a small number boxes.

(3.2 Protocol line — line 16,17): This sentence is not really clear. It could be expanded
a bit.

Response: We agree with you.

Modification (Page 6, line 5) : "We choose to simulate 50 attractors of winter and 50
attractors of summer. We have 50 x 50 = 2500 different pairs between summer and
winter. For the distances between the 50 attractors of the same season (summers or
winters), we only consider 1 < (k, k') < 50 pairs with & < k’. This means that we have
1225 distances for the winter or the summer. So we have at least 1000 distances per
distribution. This is a reasonable sample size for a representative Kolmogorov-Smirnov
test."

(3.3 Estimation — line 1): The first sentence is not really clear.
Modification: Normalize Wasserstein distance do not add information in our protocol,
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so the sentence has been removed.

(3.3 Estimation — line 11 to 15): This point is interesting and could be linked to my
general comment: which is the sensitivity of the method respect to IV together with the
number of boxes B,? Probably such parameters present an interplay in determining
the global robustness of the measure.

Response: See general comment for the question. The global robustness of the
empirical measure could be estimated by varying this parameter.

(3.3 Estimation - line 4 — second paragraph): Could the authors specify how they
computed the p-values for the KS test? Did they use tables of critical values or simu-
lated numerical p-values?

Response: The KS value is computed with an estimation of the cumulated den-
sity function of the two distributions, and the difference. The p-value is given by the
asymptotic Kolmogorov distribution. Its cumulative distribution function converges to
the supremum of a Brownian bridge B, which can be computed with

o0
P(K <a)=1-2 (-1)F e ?** K = sup |B(t)|
1 t€(0,1]

This formula can be found in Marsaglia (2003).
Modification (Page 6, line 3): Reference and explanation have been added.

(4.1 Protocol line — line 31): Could the authors show also here the comparison with
the Euclidean distance? Why they did not show such calculation?

Response: We show in Figure 1 below the calculation for Euclidean distance. For N =
50 and 100, the maximal difference of the mean (resp. standard deviation) between
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the period before and after the forcing is 0.002 (resp. 0.002). Furthermore, at least
70% of distances are in the pip of mean + standard deviation. So, we can not detect
the forcing. For N = 1000 and 10000 the maximal modification of mean is 0.004, but
the standard deviation is multiplied by a factor 20 (0.0002 becomes 0.005). Even if
the forcing is detected, the trajectories of distances are not representative of a linear
increasing forcing. This calculation was not added in article because we find the same
result of Section 3, and we focus only on the Wasserstein distance.

Modification (Page 10, line 11): This explanation has been added at the end of Sec.
4,
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