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1 Overview:

Review of “Inverse modelling of European CH4 emissions during 2006–2012 using
different inverse models and reassessed atmospheric observations” by Bergamaschi
et al.

Bergamaschi et al. present an ensemble of top-down emissions estimates for Euro-
pean methane sources for 2006–2012. The main scientific finding is that wetlands are
a significant contributor to the European methane budget. I do not support publication
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of this manuscript in it’s present form. This is mainly because (1) I find the wetland
hypothesis wholly unconvincing, (2) the methods description is poor, making it hard to
gain any insight from the different inversions, and (3) it’s not clear to this reviewer that
their “novel” approach to estimate bias is actually an advancement. As such, it’s not
clear to this reviewer that this manuscript contributes much to the current literature.

2 Major comments:

2.1 Wetland hypothesis

I do not find these arguments convincing. The arguments, as presented, are incon-
clusive at best. The region where we would expect the largest wetland emissions is
Northern Europe, however in this region the inversions consistently point to a reduced
seasonal cycle compared to WETCHIMP. The EU-28 seasonal cycle in WETCHIMP is
∼10 Tg/yr which is roughly the same as the top-down seasonal cycle in their inversions.
But, again, their inversion pointed to a decrease in the seasonal cycle in Northern Eu-
rope where the bulk of the wetland emissions should be. So why do we think this is due
to wetlands? Because other sources are assumed to be atemporal? The authors ac-
knowledge that other sources could have seasonal cycles (e.g., manure emissions are
temperature dependent, enteric fermentation could have a seasonal cycle due to vari-
ations in the herd size, etc). There is little-to-no discussion of the background used for
the region (see next comment), could errors in the background be driving this? There
is no mention of the methane sink, is the OH correct? If OH were too low then you may
have an artificially low seasonal cycle in the global simulations (which would, again,
impact the background concentrations).

It’s unclear to this reviewer why the authors did not just perform an inversion with atem-
poral emissions and compare the posterior seasonality to the prior seasonality. This
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would show how much of this derived seasonality comes from the data instead of the
prior. It would allow them to say which regions have significant seasonal cycles. The
authors could have achieved much of this by looking at the seasonal cycles in their
case with homogenous prior emissions.

2.2 Poor description of methods makes it difficult to gain any insight

The description of the various inversion systems is poor. There is a single paragraph
in the main text describing the inversions. There is no mathematical description of the
inversions. This is quite surprising since, at it’s core, this is an inversion paper. At
the bare minimum, the author’s should state the assumptions for their inversions (e.g.,
Gaussian errors?).

There is additional text in the supplement (∼1 paragraph per model) but it is difficult
to synthesize the models. Some of the models are regional but it’s not clear where
the boundary conditions are coming from. Some of the models are estimating the co-
variance matrices from the data, some are not. It is extremely difficult for the reader
to understand why these inversions are performing differently. For example, it seems
that the boundary conditions are coming from global models in the case of some re-
gional models, how independent are these different inversion systems (especially the
global/regional ones)? Are we comparing apples to apples? How much of the differ-
ences are due to assumptions vs transport vs something else? It’s extremely difficult to
understand the differences without clearly laying out the key differences between the
models.

I would point the authors to the Henne et al. (2016) paper as an example of a paper
that does a good job of explicitly highlighting the differences between their inversion
systems and allows the readers to actually gain insight from the ensemble of inver-
sions. Table 2 from Henne et al. (2016) is a particularly good example of how one can
demonstrate the major differences between inversion frameworks.
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Also, the phrase “no a priori” is, almost certainly, using incorrect terminology. The pos-
terior probability is proportional to the product of the likelihood and the prior probability:
Posterior probability ∝ Likelihood × Prior probability. Using a homogenous distribution
of emissions is still including a prior, it just isn’t based on a bottom-up inventory. To
actually use “no a priori” would be “Maximum Likelihood Estimation” where one simply
finds the parameters that maximize the likelihood term.

2.3 “Novel” Bias method #1

This “novel” bias method is, essentially, what an inversion already does. . . They are
just plotting the model-data mismatch averaged over different parts of the atmosphere.
This is hardly a “novel approach”.

The likelihood term (L) in the inversion, assuming Gaussian errors, is typically written
as the norm of the difference between the observations and the modeled concentra-
tions:

L = ||cobs − cmod|| (1)

Most atmospheric inversions assume Gaussian errors, leading to the following expres-
sion:

L =
1
2

(cobs − cmod)T R−1 (cobs − cmod) (2)

However, the modeled concentration can be broken up into the contribution from the
emissions and the background: cmod = ∆cmod + cmod,bkg where ∆cmod is the modeled
enhancement due to emissions within the domain. This can then be used to rewrite
the likelihood as:

L = ||cobs − cmod||
= ||cobs − (∆cmod + cmod,bkg)||
= ||cobs −∆cmod − cmod,bkg||
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= ||cobs − cmod,bkg −∆cmod||
= ||(cobs − cmod,bkg)−∆cmod||
= ||∆cobs −∆cmod|| (3)

From this, it’s quite easy to see how cobs−cmod ≡ ∆cobs−∆cmod. So, as I stated above,
all the authors have done is plot the model-data mismatch (cobs − cmod) averaged over
two parts of the atmosphere. It does not strike this reviewer as particularly “novel”.

There are novel approaches that attempt to account for systematic errors in inver-
sions in a rigorous manner. Weak-Constraint 4D-Var (Tremolet, 2006) and Hierarchical
Bayesian inference (see Ganesan et al., 2014 and references therein) are two good
examples of this.
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